Fourier-Jacobi coefficients of Eisenstein series on unitary groups

被引:1
|
作者
Zhang, Bei [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60202 USA
关键词
Iwasawa main conjecture; unitary groups; Eisenstein series; Fourier-Jacobi expansion; doubling method; nonvanishing modulo p; THETA-FUNCTIONS; EXTENSIONS;
D O I
10.2140/ant.2013.7.283
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the Fourier-Jacobi expansions of Eisenstein series on U(3, 1). I relate the Fourier-Jacobi coefficients of the Eisenstein series with special values of L-functions. This relationship can be applied to verify the existence of certain Eisenstein series on U(3, 1) that do not vanish modulo p. This is a crucial step towards one divisibility of the main conjecture for GL(2) x K-x using the method of Eisenstein congruences.
引用
收藏
页码:283 / 337
页数:55
相关论文
共 50 条