Separating the contributions of variability and parameter uncertainty in probability distributions

被引:91
|
作者
Sankararaman, S. [1 ]
Mahadevan, S. [1 ]
机构
[1] Vanderbilt Univ, Dept Civil & Environm Engn, Nashville, TN 37235 USA
关键词
Variability; Family of distributions; Distribution parameter uncertainty; Sparse data; Interval data; Aleatory uncertainty; Epistemic uncertainty; Sensitivity analysis; MONTE-CARLO; QUANTIFICATION; DESIGN; SAFETY;
D O I
10.1016/j.ress.2012.11.024
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes a computational methodology to quantify the individual contributions of variability and distribution parameter uncertainty to the overall uncertainty in a random variable. Even if the distribution type is assumed to be known, sparse or imprecise data leads to uncertainty about the distribution parameters. If uncertain distribution parameters are represented using probability distributions, then the random variable can be represented using a family of probability distributions. The family of distributions concept has been used to obtain qualitative, graphical inference of the contributions of natural variability and distribution parameter uncertainty. The proposed methodology provides quantitative estimates of the contributions of the two types of uncertainty. Using variance-based global sensitivity analysis, the contributions of variability and distribution parameter uncertainty to the overall uncertainty are computed. The proposed method is developed at two different levels; first, at the level of a variable whose distribution parameters are uncertain, and second, at the level of a model output whose inputs have uncertain distribution parameters. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:187 / 199
页数:13
相关论文
共 50 条
  • [41] Separating the North and South Pacific Meridional Modes Contributions to ENSO and Tropical Decadal Variability
    Liguori, Giovanni
    Di Lorenzo, Emanuele
    GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (02) : 906 - 915
  • [42] Critical Probability Distributions of the Order Parameter from the Functional Renormalization Group
    Balog, I.
    Rancon, A.
    Delamotte, B.
    PHYSICAL REVIEW LETTERS, 2022, 129 (21)
  • [43] PROBABILITY-DISTRIBUTIONS IN A 2-PARAMETER SCALING THEORY OF LOCALIZATION
    HEINRICHS, J
    PHYSICAL REVIEW B, 1988, 37 (18): : 10571 - 10580
  • [44] Two-Parameter Probability Distributions: Methods, Techniques and Comparative Analysis
    Anghel, Cristian Gabriel
    Stanca, Stefan Ciprian
    Ilinca, Cornel
    WATER, 2023, 15 (19)
  • [45] Optimal process design with model parameter uncertainty and process variability
    Rooney, WC
    Biegler, LT
    AICHE JOURNAL, 2003, 49 (02) : 438 - 449
  • [46] Probability distributions analysis of travel time variability for the public transit system
    Harsha, M. M.
    Mulangi, Raviraj H.
    INTERNATIONAL JOURNAL OF TRANSPORTATION SCIENCE AND TECHNOLOGY, 2022, 11 (04) : 790 - 803
  • [47] Probability distributions of placental morphological measurements and origins of variability of placental shapes
    Yampolsky, M.
    Salafia, C. M.
    Shlakhter, O.
    PLACENTA, 2013, 34 (06) : 493 - 496
  • [48] Quantile Probability of Detection: Distinguishing Between Uncertainty and Variability in Nondestructive Testing
    Li, M.
    Spencer, F. W.
    Meeker, W. Q.
    MATERIALS EVALUATION, 2015, 73 (01) : 89 - 95
  • [49] Controlling Uncertainty SCHRODINGER'S INFERENCE METHOD AND THE OPTIMAL STEERING OF PROBABILITY DISTRIBUTIONS
    Chen, Yongxin
    Georgiou, Tryphon T.
    Pavon, Michele
    IEEE CONTROL SYSTEMS MAGAZINE, 2021, 41 (04): : 82 - 94
  • [50] Uncertainty Quantification for Fat-Tailed Probability Distributions in Aircraft Engine Simulations
    Ahlfeld, R.
    Montomoli, F.
    Scalas, E.
    Shahpar, S.
    JOURNAL OF PROPULSION AND POWER, 2017, 33 (04) : 881 - 890