Separating the contributions of variability and parameter uncertainty in probability distributions

被引:91
|
作者
Sankararaman, S. [1 ]
Mahadevan, S. [1 ]
机构
[1] Vanderbilt Univ, Dept Civil & Environm Engn, Nashville, TN 37235 USA
关键词
Variability; Family of distributions; Distribution parameter uncertainty; Sparse data; Interval data; Aleatory uncertainty; Epistemic uncertainty; Sensitivity analysis; MONTE-CARLO; QUANTIFICATION; DESIGN; SAFETY;
D O I
10.1016/j.ress.2012.11.024
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes a computational methodology to quantify the individual contributions of variability and distribution parameter uncertainty to the overall uncertainty in a random variable. Even if the distribution type is assumed to be known, sparse or imprecise data leads to uncertainty about the distribution parameters. If uncertain distribution parameters are represented using probability distributions, then the random variable can be represented using a family of probability distributions. The family of distributions concept has been used to obtain qualitative, graphical inference of the contributions of natural variability and distribution parameter uncertainty. The proposed methodology provides quantitative estimates of the contributions of the two types of uncertainty. Using variance-based global sensitivity analysis, the contributions of variability and distribution parameter uncertainty to the overall uncertainty are computed. The proposed method is developed at two different levels; first, at the level of a variable whose distribution parameters are uncertain, and second, at the level of a model output whose inputs have uncertain distribution parameters. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:187 / 199
页数:13
相关论文
共 50 条
  • [21] Choosing probability distributions for modelling generation time variability
    Ratkowsky, DA
    Ross, T
    Macario, N
    Dommett, TW
    Kamperman, L
    JOURNAL OF APPLIED BACTERIOLOGY, 1996, 80 (02): : 131 - 137
  • [22] Separating the contributions of interaction mechanisms in the transverse-momentum distributions of light fragments
    Burduli, AV
    Grishashvili, IF
    Djalagania, DD
    Kostanashvili, NI
    Maglakelidze, KA
    Nikvashvili, TA
    PHYSICS OF ATOMIC NUCLEI, 2000, 63 (03) : 440 - 444
  • [23] Effect of parameter distributions on uncertainty analysis of hydrologic models
    Haan, CT
    Storm, DE
    Al-Issa, T
    Prabhu, S
    Sabbagh, GJ
    Edwards, DR
    TRANSACTIONS OF THE ASAE, 1998, 41 (01): : 65 - 70
  • [25] Separating the contributions of interaction mechanisms in the transverse-momentum distributions of light fragments
    A. V. Burduli
    I. F. Grishashvili
    D. D. Djalagania
    N. I. Kostanashvili
    K. A. Maglakelidze
    T. A. Nikvashvili
    Physics of Atomic Nuclei, 2000, 63 : 440 - 444
  • [26] Long tail uncertainty distributions in novel risk probability classification
    Schwabe, O.
    Shehab, E.
    Erkoyuncu, J.
    3RD CIRP GLOBAL WEB CONFERENCE - PRODUCTION ENGINEERING RESEARCH ADVANCEMENT BEYOND STATE OF THE ART (CIRPE2014), 2015, 28 : 191 - 196
  • [27] Assessment of variability and uncertainty distributions for practical risk analysis
    Hattis, Dale
    Burmaster, David E.
    Risk Analysis, 1994, 14 (05)
  • [28] ASSESSMENT OF VARIABILITY AND UNCERTAINTY DISTRIBUTIONS FOR PRACTICAL RISK ANALYSES
    HATTIS, D
    BURMASTER, DE
    RISK ANALYSIS, 1994, 14 (05) : 713 - 730
  • [29] Student difficulties with quantum uncertainty in the context of discrete probability distributions
    Li, Yujia
    Kohnle, Antje
    Passante, Gina
    2021 PHYSICS EDUCATION RESEARCH CONFERENCE (PERC), 2022, : 227 - 232
  • [30] Uncertainty-based sensitivity indices for imprecise probability distributions
    Hall, Jim W.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2006, 91 (10-11) : 1443 - 1451