Sn-Cu Nanocomposite Anodes for Rechargeable Sodium-Ion Batteries

被引:174
|
作者
Lin, Yong-Mao [1 ]
Abel, Paul R. [1 ]
Gupta, Asha [4 ,5 ]
Goodenough, John B. [3 ,4 ,5 ,6 ]
Heller, Adam [1 ,3 ]
Mullins, C. Buddie [1 ,2 ,3 ,4 ,6 ]
机构
[1] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Chem & Biochem, Austin, TX 78712 USA
[3] Univ Texas Austin, Ctr Electrochem, Austin, TX 78712 USA
[4] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
[5] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[6] Univ Texas Austin, Ctr Nano & Mol Sci, Austin, TX 78712 USA
关键词
tin copper alloy; nanoparticles; anode; Na-ion battery; FLUOROETHYLENE CARBONATE; HIGH-CAPACITY; LITHIUM; PERFORMANCE; ELECTROLYTE; CHALLENGES; INSERTION; STORAGE; SIZE;
D O I
10.1021/am4023994
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Sn0.9Cu0.1 nanoparticles were synthesized via a surfactant-assisted wet chemistry method, which were then investigated as an anode material for ambient temperature rechargeable sodium ion batteries. The Sn0.9Cu0.1 nanoparticle-based electrodes exhibited a stable capacity of greater than 420 mA h g(-1) at 0.2 C rate, retaining 97% of their maximum observed capacity after 100 cycles of sodium insertion/deinsertion. Their performance is considerably superior to electrodes made with either Sn nanoparticles or Sn microparticles.
引用
收藏
页码:8273 / 8277
页数:5
相关论文
共 50 条
  • [31] Advanced Organic Electrode Materials for Rechargeable Sodium-Ion Batteries
    Zhao, Qing
    Lu, Yong
    Chen, Jun
    ADVANCED ENERGY MATERIALS, 2017, 7 (08)
  • [32] ADVANCED ORGANIC ELECTRODE MATERIALS FOR RECHARGEABLE SODIUM-ION BATTERIES
    Balaraju, M.
    Reddy, B. V. Shiva
    Babu, T. A.
    Naidu, K. C. Babu
    Prasad, N. V. Krishna
    JOURNAL OF OVONIC RESEARCH, 2020, 16 (06): : 387 - 396
  • [33] Rhombohedral Prussian White as Cathode for Rechargeable Sodium-Ion Batteries
    Wang, Long
    Song, Jie
    Qiao, Ruimin
    Wray, L. Andrew
    Hossain, Muhammed A.
    Chuang, Yi-De
    Yang, Wanli
    Lu, Yuhao
    Evans, David
    Lee, Jong-Jan
    Vail, Sean
    Zhao, Xin
    Nishijima, Motoaki
    Kakimoto, Seizoh
    Goodenough, John B.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (07) : 2548 - 2554
  • [34] High capacity anode materials for rechargeable sodium-ion batteries
    Stevens, DA
    Dahn, JR
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) : 1271 - 1273
  • [35] Exploring the application of carbon xerogels as anodes for sodium-ion batteries
    Cuesta, Nuria
    Camean, Ignacio
    Arenillas, Ana
    Garcia, Ana B.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 308
  • [36] Research Trend on Conversion Reaction Anodes for Sodium-ion Batteries
    Kim, Suji
    Kim, You Jin
    Ryu, Won-Hee
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2019, 22 (01): : 22 - 35
  • [37] Carbon and Carbon Hybrid Materials as Anodes for Sodium-Ion Batteries
    Zhong, Xiongwu
    Wu, Ying
    Zeng, Sifan
    Yu, Yan
    CHEMISTRY-AN ASIAN JOURNAL, 2018, 13 (10) : 1248 - 1265
  • [38] Biomass-derived carbon anodes for sodium-ion batteries
    Huang, Si
    Qiu, Xue-qing
    Wang, Cai-wei
    Zhong, Lei
    Zhang, Zhi-hong
    Yang, Shun-sheng
    Sun, Shi-rong
    Yang, Dong-Jie
    Zhang, Wen-li
    NEW CARBON MATERIALS, 2023, 38 (01) : 40 - 72
  • [39] Progress on iron oxides and chalcogenides as anodes for sodium-ion batteries
    Qi, Shihan
    Xu, Baolin
    Tiong, Vincent Tiing
    Hu, Jin
    Ma, Jianmin
    CHEMICAL ENGINEERING JOURNAL, 2020, 379 (379)
  • [40] Synthesis strategies of hard carbon anodes for sodium-ion batteries
    Yin, Jian
    Zhang, Ye Shui
    Liang, Hanfeng
    Zhang, Wenli
    Zhu, Yunpei
    MATERIALS REPORTS: ENERGY, 2024, 4 (02):