Strichartz Estimate and Nonlinear Klein-Gordon Equation on Nontrapping Scattering Space

被引:7
|
作者
Zhang, Junyong [1 ,2 ]
Zheng, Jiqiang [3 ,4 ]
机构
[1] Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
[2] Cardiff Univ, Sch Math, Cardiff CF24 4AG, S Glam, Wales
[3] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[4] Univ Nice Sophia Antipolis, F-06108 Nice 02, France
基金
欧洲研究理事会; 中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Strichartz estimate; Scattering manifold; Spectral measure; Global existence; Scattering theory; WAVE-EQUATIONS; REGULARITY; EXISTENCE; RESOLVENT; SITTER; PARAMETRIX; PROPAGATOR; OPERATORS;
D O I
10.1007/s12220-018-00100-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the nonlinear Klein-Gordon equation on a product space M = R x X with metric g = dt2 -g where g is the scattering metric on X. We establish the global-intime Strichartz estimate for Klein-Gordon equationwithout loss of derivative by using the microlocalized spectral measure of Laplacian on scattering manifold showed in Hassell and Zhang (Anal PDE 9: 151-192, 2016) and a Littlewood-Paley squarefunction estimate proved in Zhang (Adv Math 271: 91-111, 2015). We prove the global existence and scattering for a family of nonlinear Klein-Gordon equations for small initial data with minimum regularity on this setting.
引用
下载
收藏
页码:2957 / 2984
页数:28
相关论文
共 50 条