共 50 条
Strichartz Estimate and Nonlinear Klein-Gordon Equation on Nontrapping Scattering Space
被引:7
|作者:
Zhang, Junyong
[1
,2
]
Zheng, Jiqiang
[3
,4
]
机构:
[1] Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
[2] Cardiff Univ, Sch Math, Cardiff CF24 4AG, S Glam, Wales
[3] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[4] Univ Nice Sophia Antipolis, F-06108 Nice 02, France
基金:
欧洲研究理事会;
中国国家自然科学基金;
英国工程与自然科学研究理事会;
关键词:
Strichartz estimate;
Scattering manifold;
Spectral measure;
Global existence;
Scattering theory;
WAVE-EQUATIONS;
REGULARITY;
EXISTENCE;
RESOLVENT;
SITTER;
PARAMETRIX;
PROPAGATOR;
OPERATORS;
D O I:
10.1007/s12220-018-00100-3
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study the nonlinear Klein-Gordon equation on a product space M = R x X with metric g = dt2 -g where g is the scattering metric on X. We establish the global-intime Strichartz estimate for Klein-Gordon equationwithout loss of derivative by using the microlocalized spectral measure of Laplacian on scattering manifold showed in Hassell and Zhang (Anal PDE 9: 151-192, 2016) and a Littlewood-Paley squarefunction estimate proved in Zhang (Adv Math 271: 91-111, 2015). We prove the global existence and scattering for a family of nonlinear Klein-Gordon equations for small initial data with minimum regularity on this setting.
引用
下载
收藏
页码:2957 / 2984
页数:28
相关论文