Chiral Koszul duality

被引:42
|
作者
Francis, John [1 ]
Gaitsgory, Dennis [2 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2012年 / 18卷 / 01期
基金
美国国家科学基金会;
关键词
Chiral algebras; Chiral homology; Factorization algebras; Conformal field theory; Koszul duality; Operads; infinity-Categories; HOMOTOPY;
D O I
10.1007/s00029-011-0065-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the theory of chiral and factorization algebras, developed for curves by Beilinson and Drinfeld (American Mathematical Society Colloquium Publications, 51. American Mathematical Society, Providence, RI, 2004), to higher-dimensional varieties. This extension entails the development of the homotopy theory of chiral and factorization structures, in a sense analogous to Quillen's homotopy theory of differential graded Lie algebras. We prove the equivalence of higher-dimensional chiral and factorization algebras by embedding factorization algebras into a larger category of chiral commutative coalgebras, then realizing this interrelation as a chiral form of Koszul duality. We apply these techniques to rederive some fundamental results of Beilinson and Drinfeld (American Mathematical Society Colloquium Publications, 51. American Mathematical Society, Providence, RI, 2004) on chiral enveloping algebras of star-Lie algebras.
引用
收藏
页码:27 / 87
页数:61
相关论文
共 50 条
  • [31] KOSZUL DUALITY IN HIGHER TOPOI
    Beardsley, Jonathan
    Peroux, Maximilien
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2023, 25 (01) : 53 - 70
  • [32] Koszul duality for Lie algebroids
    Nuiten, Joost
    ADVANCES IN MATHEMATICS, 2019, 354
  • [33] KOSZUL DUALITY AND SEMISIMPLICITY OF FROBENIUS
    Achar, Pramod N.
    Riche, Simon
    ANNALES DE L INSTITUT FOURIER, 2013, 63 (04) : 1511 - 1612
  • [34] PROTOPERADS II: KOSZUL DUALITY
    Leray, Johan
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2020, 7 : 897 - 941
  • [35] Koszul duality and equivariant cohomology
    Franz, Matthias
    DOCUMENTA MATHEMATICA, 2006, 11 : 243 - 259
  • [36] Koszul Duality for Multigraded Algebras
    Hawwa, F. T.
    Hoffman, J. William
    Wang, Haohao
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2012, 5 (04): : 511 - 539
  • [37] KOSZUL DUALITY AND GALOIS COHOMOLOGY
    Positselski, Leonid
    Vishik, Alexander
    MATHEMATICAL RESEARCH LETTERS, 1995, 2 (06) : 771 - 781
  • [38] Koszul duality of translation - and Zuckerman functors
    Ryom-Hansen, S
    JOURNAL OF LIE THEORY, 2004, 14 (01) : 151 - 163
  • [39] Correction to: Curved Koszul duality theory
    Joseph Hirsh
    Joan Millès
    Mathematische Annalen, 2024, 389 (1) : 999 - 1005
  • [40] A duality theorem for generalized Koszul algebras
    Martinez-Villa, Roberto
    Saorin, Manuel
    JOURNAL OF ALGEBRA, 2007, 315 (01) : 121 - 133