Stromal Transcription Factor 21 Regulates Development of the Renal Stroma via Interaction with Wnt/β-Catenin Signaling

被引:6
|
作者
Finer, Gal [1 ,2 ,3 ]
Maezawa, Yoshiro [4 ]
Ide, Shintaro [5 ]
Onay, Tuncer [2 ,6 ]
Souma, Tomokazu [5 ]
Scott, Rizaldy [2 ,6 ]
Liang, Xiaoyan [1 ,3 ]
Zhao, Xiangmin [1 ]
Gadhvi, Gaurav [7 ]
Winter, Deborah R. [7 ]
Quaggin, Susan E. [2 ,6 ]
Hayashida, Tomoko [1 ,3 ]
机构
[1] Ann & Robert H Lurie Childrens Hosp Chicago, Div Nephrol, 225 E Chicago Ave,Box 37, Chicago, IL 60611 USA
[2] Northwestern Univ, Feinberg Cardiovasc & Renal Res Inst, Feinberg Sch Med, Chicago, IL 60611 USA
[3] Northwestern Univ, Dept Pediat, Feinberg Sch Med, Chicago, IL 60611 USA
[4] Chiba Univ, Dept Endocrinol Hematol & Gerontol, Grad Sch Med, Chiba, Japan
[5] Duke Univ, Dept Med, Durham, NC USA
[6] Northwestern Univ, Div Nephrol Hypertens, Feinberg Sch Med, Chicago, IL 60611 USA
[7] Northwestern Univ, Feinberg Sch Med, Div Rheumatol, Chicago, IL 60611 USA
来源
KIDNEY360 | 2022年 / 3卷 / 07期
基金
新加坡国家研究基金会; 日本学术振兴会; 美国国家卫生研究院;
关键词
LOOP-HELIX PROTEIN; PROGENITOR POPULATION; KIDNEY; CELLS; POD1; TCF21; ESTABLISHES; REPRESSION; MESENCHYME; LINEAGE;
D O I
10.34067/KID.0005572021
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background Kidney formation requires coordinated interactions between multiple cell types. Input from the interstitial progenitor cells is implicated in multiple aspects of kidney development. We previously reported that transcription factor 21 (Tcf21) is required for ureteric bud branching. Here, we show that Tcf21 in Foxd1+ interstitial progenitors regulates stromal formation and differentiation via interaction with beta-catenin. Methods We utilized the Foxd1Cre;Tcf21(f/f) murine kidney for morphologic analysis. We used the murine clonal mesenchymal cell lines MK3/M15 to study Tcf21 interaction with Wnt/beta-catenin. Results Absence of Tcf21 from Foxd1+ stromal progenitors caused a decrease in stromal cell proliferation, leading to marked reduction of the medullary stromal space. Lack of Tcf21 in the Foxd1+ stromal cells also led to defective differentiation of interstitial cells to smooth-muscle cells, perivascular pericytes, and mesangial cells. Foxd1Cre;Tcf21(f/f) kidney showed an abnormal pattern of the renal vascular tree. The stroma of Foxd1Cre;Tcf21(f/f) kidney demonstrated marked reduction in beta-catenin protein expression compared with wild type. Tcf21 was bound to beta-catenin both upon beta-catenin stabilization and at basal state as demonstrated by immunoprecipitation in vitro. In MK3/M15 metanephric mesenchymal cells, Tcf21 enhanced TCF/LEF promoter activity upon p-catenin stabilization, whereas DNA-binding deficient mutated Tcf21 did not enhance TCF/LEF promoter activity. Kidney explants of Foxd1Cre;Tcf21(f/f) showed low mRNA expression of stromal Wnt target genes. Treatment of the explants with CHIR, a Wnt ligand mimetic, restored Wnt target gene expression. Here, we also corroborated previous evidence that normal development of the kidney stroma is required for normal development of the Six2 + nephron progenitor cells, loop of Henle, and the collecting ducts. Conclusions These findings suggest that stromal Tcf21 facilitates medullary stroma development by enhancing Wnt/beta-catenin signaling and promotes stromal cell proliferation and differentiation. Stromal Tcf21 is also required for the development of the adjacent nephron epithelia.
引用
收藏
页码:1228 / 1241
页数:14
相关论文
共 50 条
  • [41] LRP6 regulates growth in Litopenaeus vannamei via the Wnt/β-catenin signaling pathway
    Wang, Sheng
    Wang, Xiaodi
    Yang, Hao
    Di, Xuanzheng
    Li, Haoyang
    Yin, Bin
    Liu, Ziwei
    Li, Chaozheng
    He, Jianguo
    AQUACULTURE REPORTS, 2025, 42
  • [42] EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling
    Junjie Shen
    Yi Sun
    Xuanzhe Liu
    Yu Zhu
    Bingbo Bao
    Tao Gao
    Yimin Chai
    Jia Xu
    Xianyou Zheng
    Stem Cell Research & Therapy, 12
  • [43] Mink1 Regulates β-Catenin-Independent Wnt Signaling via Prickle Phosphorylation
    Daulat, Avais M.
    Luu, Olivia
    Sing, Anson
    Zhang, Liang
    Wrana, Jeffrey L.
    McNeill, Helen
    Winklbauer, Rudolf
    Angers, Stephane
    MOLECULAR AND CELLULAR BIOLOGY, 2012, 32 (01) : 173 - 185
  • [44] Decreased expression of GEM in osteoarthritis cartilage regulates chondrogenic differentiation via Wnt/β-catenin signaling
    Lu Gan
    Zhonghao Deng
    Yiran Wei
    Hongfang Li
    Liang Zhao
    Journal of Orthopaedic Surgery and Research, 18
  • [45] EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling
    Shen, Junjie
    Sun, Yi
    Liu, Xuanzhe
    Zhu, Yu
    Bao, Bingbo
    Gao, Tao
    Chai, Yimin
    Xu, Jia
    Zheng, Xianyou
    STEM CELL RESEARCH & THERAPY, 2021, 12 (01)
  • [46] Dok5 regulates proliferation and differentiation of osteoblast via canonical Wnt/β-catenin signaling
    Xu, Liang
    Wu, Junguo
    Yu, Yueming
    Li, Haoran
    Sun, Shiwei
    Zhang, Tieqi
    Wang, Minghai
    JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS, 2022, 22 (01) : 113 - 122
  • [47] Morroniside regulates hair growth and cycle transition via activation of the Wnt/β-catenin signaling pathway
    Zhou, Lijuan
    Wang, Han
    Jing, Jing
    Yu, Lijuan
    Wu, Xianjie
    Lu, Zhongfa
    SCIENTIFIC REPORTS, 2018, 8
  • [48] Stromal cell-derived factor-1α regulates chondrogenic differentiation via activation of the Wnt/β-catenin pathway in mesenchymal stem cells
    Chen, Xiao
    Liang, Xia-Ming
    Zheng, Jia
    Dong, Yong-Hui
    WORLD JOURNAL OF STEM CELLS, 2023, 15 (05): : 490 - 501
  • [49] The Amotl2 Gene Inhibits Wnt/β-Catenin Signaling and Regulates Embryonic Development in Zebrafish
    Li, Zhiqiang
    Wang, Yeqi
    Zhang, Min
    Xu, Pengfei
    Huang, Huizhe
    Wu, Di
    Meng, Anming
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (16) : 13005 - 13015
  • [50] Wnt/β-catenin signaling in the dental mesenchyme regulates incisor development by regulating Bmp4
    Fujimori, Sayumi
    Novak, Hermann
    Weissenboeck, Martina
    Jussila, Maria
    Goncalves, Alexandre
    Zeller, Rolf
    Galloway, Jenna
    Thesleff, Irma
    Hartmann, Christine
    DEVELOPMENTAL BIOLOGY, 2010, 348 (01) : 97 - 106