Stromal Transcription Factor 21 Regulates Development of the Renal Stroma via Interaction with Wnt/β-Catenin Signaling

被引:6
|
作者
Finer, Gal [1 ,2 ,3 ]
Maezawa, Yoshiro [4 ]
Ide, Shintaro [5 ]
Onay, Tuncer [2 ,6 ]
Souma, Tomokazu [5 ]
Scott, Rizaldy [2 ,6 ]
Liang, Xiaoyan [1 ,3 ]
Zhao, Xiangmin [1 ]
Gadhvi, Gaurav [7 ]
Winter, Deborah R. [7 ]
Quaggin, Susan E. [2 ,6 ]
Hayashida, Tomoko [1 ,3 ]
机构
[1] Ann & Robert H Lurie Childrens Hosp Chicago, Div Nephrol, 225 E Chicago Ave,Box 37, Chicago, IL 60611 USA
[2] Northwestern Univ, Feinberg Cardiovasc & Renal Res Inst, Feinberg Sch Med, Chicago, IL 60611 USA
[3] Northwestern Univ, Dept Pediat, Feinberg Sch Med, Chicago, IL 60611 USA
[4] Chiba Univ, Dept Endocrinol Hematol & Gerontol, Grad Sch Med, Chiba, Japan
[5] Duke Univ, Dept Med, Durham, NC USA
[6] Northwestern Univ, Div Nephrol Hypertens, Feinberg Sch Med, Chicago, IL 60611 USA
[7] Northwestern Univ, Feinberg Sch Med, Div Rheumatol, Chicago, IL 60611 USA
来源
KIDNEY360 | 2022年 / 3卷 / 07期
基金
新加坡国家研究基金会; 日本学术振兴会; 美国国家卫生研究院;
关键词
LOOP-HELIX PROTEIN; PROGENITOR POPULATION; KIDNEY; CELLS; POD1; TCF21; ESTABLISHES; REPRESSION; MESENCHYME; LINEAGE;
D O I
10.34067/KID.0005572021
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background Kidney formation requires coordinated interactions between multiple cell types. Input from the interstitial progenitor cells is implicated in multiple aspects of kidney development. We previously reported that transcription factor 21 (Tcf21) is required for ureteric bud branching. Here, we show that Tcf21 in Foxd1+ interstitial progenitors regulates stromal formation and differentiation via interaction with beta-catenin. Methods We utilized the Foxd1Cre;Tcf21(f/f) murine kidney for morphologic analysis. We used the murine clonal mesenchymal cell lines MK3/M15 to study Tcf21 interaction with Wnt/beta-catenin. Results Absence of Tcf21 from Foxd1+ stromal progenitors caused a decrease in stromal cell proliferation, leading to marked reduction of the medullary stromal space. Lack of Tcf21 in the Foxd1+ stromal cells also led to defective differentiation of interstitial cells to smooth-muscle cells, perivascular pericytes, and mesangial cells. Foxd1Cre;Tcf21(f/f) kidney showed an abnormal pattern of the renal vascular tree. The stroma of Foxd1Cre;Tcf21(f/f) kidney demonstrated marked reduction in beta-catenin protein expression compared with wild type. Tcf21 was bound to beta-catenin both upon beta-catenin stabilization and at basal state as demonstrated by immunoprecipitation in vitro. In MK3/M15 metanephric mesenchymal cells, Tcf21 enhanced TCF/LEF promoter activity upon p-catenin stabilization, whereas DNA-binding deficient mutated Tcf21 did not enhance TCF/LEF promoter activity. Kidney explants of Foxd1Cre;Tcf21(f/f) showed low mRNA expression of stromal Wnt target genes. Treatment of the explants with CHIR, a Wnt ligand mimetic, restored Wnt target gene expression. Here, we also corroborated previous evidence that normal development of the kidney stroma is required for normal development of the Six2 + nephron progenitor cells, loop of Henle, and the collecting ducts. Conclusions These findings suggest that stromal Tcf21 facilitates medullary stroma development by enhancing Wnt/beta-catenin signaling and promotes stromal cell proliferation and differentiation. Stromal Tcf21 is also required for the development of the adjacent nephron epithelia.
引用
收藏
页码:1228 / 1241
页数:14
相关论文
共 50 条
  • [21] Protective role of kallistatin in renal fibrosis via modulation of Wnt/β-catenin signaling
    Yiu, Wai Han
    Li, Ye
    Lok, Sarah W. Y.
    Chan, Kam Wa
    Chan, Loretta Y. Y.
    Leung, Joseph C. K.
    Lai, Kar Neng
    Tsu, James H. L.
    Chao, Julie
    Huang, Xiao-Ru
    Lan, Hui Yao
    Tang, Sydney C. W.
    CLINICAL SCIENCE, 2021, 135 (03) : 429 - 446
  • [22] Eukaryotic initiation factor 6 selectively regulates Wnt signaling and β-catenin protein synthesis
    Y Ji
    S Shah
    K Soanes
    M N Islam
    B Hoxter
    S Biffo
    T Heslip
    S Byers
    Oncogene, 2008, 27 : 755 - 762
  • [23] Prorenin receptor controls renal branching morphogenesis via Wnt/β-catenin signaling
    Song, Renfang
    Janssen, Adam
    Li, Yuwen
    El-Dahr, Samir
    Yosypiv, Ihor V.
    AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2017, 312 (03) : F407 - F417
  • [24] Eukaryotic initiation factor 6 selectively regulates Wnt signaling and β-catenin protein synthesis
    Ji, Y.
    Shah, S.
    Soanes, K.
    Islam, M. N.
    Hoxter, B.
    Biffo, S.
    Heslip, T.
    Byers, S.
    ONCOGENE, 2008, 27 (06) : 755 - 762
  • [25] Glucose regulates chemoresistance and stemness via Wnt/β-catenin signaling in ovarian cancer cells
    Gwak, HyeRan
    Kim, Soochi
    Jo, UnTek
    Song, Yong Sang
    CANCER RESEARCH, 2015, 75
  • [26] Epidermal Wnt/β-catenin signaling regulates adipocyte differentiation via secretion of adipogenic factors
    Donati, Giacomo
    Proserpio, Valentina
    Lichtenberger, Beate Maria
    Natsuga, Ken
    Sinclair, Rodney
    Fujiwara, Hironobu
    Watt, Fiona M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (15) : E1501 - E1509
  • [27] Estrogen-related receptor α regulates osteoblast differentiation via Wnt/β-catenin signaling
    Auld, Kathryn L.
    Berasi, Stephen P.
    Liu, Yan
    Cain, Michael
    Zhang, Ying
    Huard, Christine
    Fukayama, Shoichi
    Zhang, Jing
    Choe, Sung
    Zhong, Wenyan
    Bhat, Bheem M.
    Bhat, Ramesh A.
    Brown, Eugene L.
    Martinez, Robert V.
    JOURNAL OF MOLECULAR ENDOCRINOLOGY, 2012, 48 (02) : 177 - 191
  • [28] Genetic interaction between PGE2 and the Wnt/β-catenin signaling pathway regulates definitive HSC development and homeostasis
    North, Tristd E.
    Goessling, Wolfram
    Lord, Allegra M.
    Stoick, Cristi
    Moon, Randall T.
    Zon, Leonard I.
    BLOOD, 2007, 110 (11) : 67A - 68A
  • [29] Wnt signalling regulates transcription factor networks in vertebrate heart development
    Martin, J.
    Hoppler, S.
    JOURNAL OF ANATOMY, 2009, 214 (05) : 784 - 785
  • [30] Wnt signalling regulates transcription factor networks in vertebrate heart development
    Martin, J.
    Hoppler, S.
    JOURNAL OF ANATOMY, 2008, 212 (01) : 84 - 84