Stromal Transcription Factor 21 Regulates Development of the Renal Stroma via Interaction with Wnt/β-Catenin Signaling

被引:6
|
作者
Finer, Gal [1 ,2 ,3 ]
Maezawa, Yoshiro [4 ]
Ide, Shintaro [5 ]
Onay, Tuncer [2 ,6 ]
Souma, Tomokazu [5 ]
Scott, Rizaldy [2 ,6 ]
Liang, Xiaoyan [1 ,3 ]
Zhao, Xiangmin [1 ]
Gadhvi, Gaurav [7 ]
Winter, Deborah R. [7 ]
Quaggin, Susan E. [2 ,6 ]
Hayashida, Tomoko [1 ,3 ]
机构
[1] Ann & Robert H Lurie Childrens Hosp Chicago, Div Nephrol, 225 E Chicago Ave,Box 37, Chicago, IL 60611 USA
[2] Northwestern Univ, Feinberg Cardiovasc & Renal Res Inst, Feinberg Sch Med, Chicago, IL 60611 USA
[3] Northwestern Univ, Dept Pediat, Feinberg Sch Med, Chicago, IL 60611 USA
[4] Chiba Univ, Dept Endocrinol Hematol & Gerontol, Grad Sch Med, Chiba, Japan
[5] Duke Univ, Dept Med, Durham, NC USA
[6] Northwestern Univ, Div Nephrol Hypertens, Feinberg Sch Med, Chicago, IL 60611 USA
[7] Northwestern Univ, Feinberg Sch Med, Div Rheumatol, Chicago, IL 60611 USA
来源
KIDNEY360 | 2022年 / 3卷 / 07期
基金
新加坡国家研究基金会; 日本学术振兴会; 美国国家卫生研究院;
关键词
LOOP-HELIX PROTEIN; PROGENITOR POPULATION; KIDNEY; CELLS; POD1; TCF21; ESTABLISHES; REPRESSION; MESENCHYME; LINEAGE;
D O I
10.34067/KID.0005572021
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background Kidney formation requires coordinated interactions between multiple cell types. Input from the interstitial progenitor cells is implicated in multiple aspects of kidney development. We previously reported that transcription factor 21 (Tcf21) is required for ureteric bud branching. Here, we show that Tcf21 in Foxd1+ interstitial progenitors regulates stromal formation and differentiation via interaction with beta-catenin. Methods We utilized the Foxd1Cre;Tcf21(f/f) murine kidney for morphologic analysis. We used the murine clonal mesenchymal cell lines MK3/M15 to study Tcf21 interaction with Wnt/beta-catenin. Results Absence of Tcf21 from Foxd1+ stromal progenitors caused a decrease in stromal cell proliferation, leading to marked reduction of the medullary stromal space. Lack of Tcf21 in the Foxd1+ stromal cells also led to defective differentiation of interstitial cells to smooth-muscle cells, perivascular pericytes, and mesangial cells. Foxd1Cre;Tcf21(f/f) kidney showed an abnormal pattern of the renal vascular tree. The stroma of Foxd1Cre;Tcf21(f/f) kidney demonstrated marked reduction in beta-catenin protein expression compared with wild type. Tcf21 was bound to beta-catenin both upon beta-catenin stabilization and at basal state as demonstrated by immunoprecipitation in vitro. In MK3/M15 metanephric mesenchymal cells, Tcf21 enhanced TCF/LEF promoter activity upon p-catenin stabilization, whereas DNA-binding deficient mutated Tcf21 did not enhance TCF/LEF promoter activity. Kidney explants of Foxd1Cre;Tcf21(f/f) showed low mRNA expression of stromal Wnt target genes. Treatment of the explants with CHIR, a Wnt ligand mimetic, restored Wnt target gene expression. Here, we also corroborated previous evidence that normal development of the kidney stroma is required for normal development of the Six2 + nephron progenitor cells, loop of Henle, and the collecting ducts. Conclusions These findings suggest that stromal Tcf21 facilitates medullary stroma development by enhancing Wnt/beta-catenin signaling and promotes stromal cell proliferation and differentiation. Stromal Tcf21 is also required for the development of the adjacent nephron epithelia.
引用
收藏
页码:1228 / 1241
页数:14
相关论文
共 50 条
  • [1] Stromal Transcription Factor 21 Is Critical for Development of the Interstitium and Nephron Progenitor Cells via Interaction with Wnt/β-Catenin Signaling
    Finer, Gal
    Maezawa, Yoshiro
    Ide, Shintaro
    Onay, Tuncer
    Souma, Tomokazu
    Winter, Deborah R.
    Quaggin, Susan E.
    Hayashida, Tomoko
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (10): : 227 - 228
  • [2] Wnt/β-catenin signaling represses heart muscle development via GATA transcription factors
    Hoppler, Stefan Peter
    Lavery, Danielle Lynn
    Afouda, Boni Anatole
    Martin, Jennifer
    FASEB JOURNAL, 2010, 24
  • [3] (Pro)renin receptor regulates lung development via the Wnt/β-catenin signaling pathway
    Liu, Jie
    Zhou, Yafan
    Liu, Yalan
    Li, Lei
    Chen, Yan
    Liu, Yali
    Feng, Yumei
    Yosypiv, Ihor, V
    Song, Renfang
    Peng, Hua
    AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2019, 317 (02) : L202 - L211
  • [4] Wnt/beta Catenin Signaling Regulates Lymphatic Vascular Development
    Srinivasan, Sathish
    Cha, Boksik
    CIRCULATION, 2017, 136
  • [5] Wnt/β-catenin signalling regulates cardiomyogenesis via GATA transcription factors
    Martin, Jennifer
    Afouda, Boni A.
    Hoppler, Stefan
    JOURNAL OF ANATOMY, 2010, 216 (01) : 92 - 107
  • [6] Wnt/β-catenin signaling regulates cranial base development and growth
    Nagayama, M.
    Iwamoto, M.
    Hargett, A.
    Kamiya, N.
    Tamamura, Y.
    Young, B.
    Morrison, T.
    Takeuchi, H.
    Pacifici, M.
    Enomoto-Iwamoto, M.
    Koyama, E.
    JOURNAL OF DENTAL RESEARCH, 2008, 87 (03) : 244 - 249
  • [7] Metformin regulates stromal-epithelial cells communication via Wnt2/β-catenin signaling in endometriosis
    Zhang, Hui
    Xue, Jing
    Li, Mingjiang
    Zhao, Xingbo
    Wei, Deying
    Li, Changzhong
    MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2015, 413 (0C) : 61 - 65
  • [8] Alcohol Regulates BK Surface Expression via Wnt/β-Catenin Signaling
    Velazquez-Marrero, Cristina
    Burgos, Alexandra
    Garcia, Jose O.
    Palacio, Stephanie
    Marrero, Hector G.
    Bernardo, Alexandra
    Perez-Laspiur, Juliana
    Rivera-Oliver, Marla
    Seale, Garrett
    Treistman, Steven N.
    JOURNAL OF NEUROSCIENCE, 2016, 36 (41): : 10625 - 10639
  • [9] The transcription factor Hypermethylated in Cancer 1 (Hic1) regulates neural crest migration via interaction with Wnt signaling
    Ray, Heather
    Chang, Chenbei
    DEVELOPMENTAL BIOLOGY, 2020, 463 (02) : 169 - 181
  • [10] The Wnt Effector Transcription Factor 7-Like 2 Positively Regulates Oligodendrocyte Differentiation in a Manner Independent of Wnt/β-Catenin Signaling
    Hammond, Elizabeth
    Lang, Jordan
    Maeda, Yoshiko
    Pleasure, David
    Angus-Hill, Melinda
    Xu, Jie
    Horiuchi, Makoto
    Deng, Wenbin
    Guo, Fuzheng
    JOURNAL OF NEUROSCIENCE, 2015, 35 (12): : 5007 - 5022