Interaction-enhanced integer quantum Hall effect in disordered systems

被引:16
|
作者
Zheng, Jun-Hui [1 ]
Qin, Tao [1 ,2 ]
Hofstetter, Walter [1 ]
机构
[1] Goethe Univ, Inst Theoret Phys, D-60438 Frankfurt, Germany
[2] Anhui Univ, Sch Phys & Mat Sci, Hefei 230601, Anhui, Peoples R China
关键词
ENERGY; CONDUCTANCE; LATTICE;
D O I
10.1103/PhysRevB.99.125138
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study transport properties and topological phase transition in two-dimensional interacting disordered systems. We derive the Hall conductance within real-space dynamical mean-field theory, which is quantized and serves as a topological invariant for insulators, even when the energy gap is closed by localized states. In the spinful Harper-Hofstadter-Hatsugai model, in the trivial insulator regime, we find that the repulsive on-site interaction can assist weak disorder to induce the integer quantum Hall effect, while in the topologically nontrivial regime, it impedes Anderson localization. Generally, the interaction broadens the regime of the topological phase in the disordered system.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Integer quantum Hall effect on an interface with disclinations
    A.A. de Lima
    C. Filgueiras
    The European Physical Journal B, 2012, 85
  • [32] Integer quantum Hall effect on an interface with disclinations
    de Lima, A. A.
    Filgueiras, C.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (12):
  • [33] Odd integer quantum Hall effect in graphene
    Roy, Bitan
    PHYSICAL REVIEW B, 2011, 84 (03)
  • [34] Phase diagram of the integer quantum Hall effect
    Sheng, DN
    Weng, ZY
    PHYSICAL REVIEW B, 2000, 62 (23): : 15363 - 15366
  • [35] Integer quantum Hall effect and correlated disorder
    A. A. Greshnov
    G. G. Zegrya
    Semiconductors, 2007, 41 : 1329 - 1334
  • [36] Integer quantum Hall effect and related phenomena
    Dolgopolov, V. T.
    PHYSICS-USPEKHI, 2014, 57 (02) : 105 - 127
  • [37] Absence of scaling in the integer quantum hall effect
    Balaban, NQ
    Meirav, U
    Bar-Joseph, I
    PHYSICAL REVIEW LETTERS, 1998, 81 (22) : 4967 - 4970
  • [38] Introduction to the theory of the integer quantum hall effect
    Ploog, Klaus H.
    Chemical Vapor Deposition, 1995, 1 (03)
  • [39] Inductive probing of the integer quantum Hall effect
    Yahel, E
    Orgad, D
    Palevski, A
    Shtrikman, H
    PHYSICAL REVIEW LETTERS, 1996, 76 (12) : 2149 - 2152
  • [40] Geometrical exponents in the integer quantum Hall effect
    Bratberg, I
    Hansen, A
    Hauge, EH
    EUROPHYSICS LETTERS, 1997, 37 (01): : 19 - 24