Interaction-enhanced integer quantum Hall effect in disordered systems

被引:16
|
作者
Zheng, Jun-Hui [1 ]
Qin, Tao [1 ,2 ]
Hofstetter, Walter [1 ]
机构
[1] Goethe Univ, Inst Theoret Phys, D-60438 Frankfurt, Germany
[2] Anhui Univ, Sch Phys & Mat Sci, Hefei 230601, Anhui, Peoples R China
关键词
ENERGY; CONDUCTANCE; LATTICE;
D O I
10.1103/PhysRevB.99.125138
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study transport properties and topological phase transition in two-dimensional interacting disordered systems. We derive the Hall conductance within real-space dynamical mean-field theory, which is quantized and serves as a topological invariant for insulators, even when the energy gap is closed by localized states. In the spinful Harper-Hofstadter-Hatsugai model, in the trivial insulator regime, we find that the repulsive on-site interaction can assist weak disorder to induce the integer quantum Hall effect, while in the topologically nontrivial regime, it impedes Anderson localization. Generally, the interaction broadens the regime of the topological phase in the disordered system.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Optical Hall Effect in the Integer Quantum Hall Regime
    Ikebe, Y.
    Morimoto, T.
    Masutomi, R.
    Okamoto, T.
    Aoki, H.
    Shimano, R.
    PHYSICAL REVIEW LETTERS, 2010, 104 (25)
  • [22] Integer quantum Hall effect in isotropic 3D systems
    Koshino, M
    Aoki, H
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 22 (1-3): : 214 - 217
  • [23] Spin instability of integer quantum Hall systems
    Yoshizawa, Kanako
    Takayanagi, Kazuo
    PHYSICAL REVIEW B, 2007, 76 (15):
  • [24] Odd-integer quantum Hall effect in graphene: Interaction and disorder effects
    Sheng, L.
    Sheng, D. N.
    Haldane, F. D. M.
    Balents, Leon
    PHYSICAL REVIEW LETTERS, 2007, 99 (19)
  • [25] Half-integer quantum Hall effect of disordered Dirac fermions at a topological insulator surface
    Koenig, E. J.
    Ostrovsky, P. M.
    Protopopov, I. V.
    Gornyi, I. V.
    Burmistrov, I. S.
    Mirlin, A. D.
    PHYSICAL REVIEW B, 2014, 90 (16):
  • [26] Integer quantum Hall effect in a PbTe quantum well
    Chitta, V. A.
    Desrat, W.
    Maude, D. K.
    Piot, B. A.
    Oliveira, N. F., Jr.
    Rappl, P. H. O.
    Ueta, A. Y.
    Abramof, E.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 34 (1-2): : 124 - 127
  • [27] A heuristic quantum theory of the integer quantum Hall effect
    Kramer, Tobias
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (10): : 1243 - 1260
  • [28] Effects of quantum deformation on the integer quantum Hall effect
    Andrade, Fabiano M.
    Silva, Edilberto O.
    Assafrao, Denise
    Filgueiras, Cleverson
    EPL, 2016, 116 (03)
  • [29] Activated resistivities in the integer quantum Hall effect
    Mandal, SS
    Ravishankar, V
    PHYSICAL REVIEW B, 1997, 55 (23): : 15748 - 15756
  • [30] Introduction to the theory of the integer quantum Hall effect
    Doucot, Benoit
    COMPTES RENDUS PHYSIQUE, 2011, 12 (04) : 323 - 331