Bayesian Optimization of 3D Feature Parameters for 6D Pose Estimation

被引:0
|
作者
Hagelskjaer, Frederik [1 ]
Kruger, Norbert [1 ]
Buch, Anders [1 ]
机构
[1] Univ Southern Denmark, Maersk Mc Kinney Moller Inst, Odense, Denmark
基金
欧盟地平线“2020”;
关键词
Pose Estimation; Object Detection; Feature Matching; Optimization; Bayesian Optimization; Machine Learning; OBJECT RECOGNITION; SURFACE;
D O I
10.5220/0007568801350142
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
6D pose estimation using local features has shown state-of-the-art performance for object recognition and pose estimation from 3D data in a number of benchmarks. However, this method requires extensive knowledge and elaborate parameter tuning to obtain optimal performances. In this paper, we propose an optimization method able to determine feature parameters automatically, providing improved point matches to a robust pose estimation algorithm. Using labeled data, our method measures the performance of the current parameter setting using a scoring function based on both true and false positive detections. Combined with a Bayesian optimization strategy, we achieve automatic tuning using few labeled examples. Experiments were performed on two recent RGB-D benchmark datasets. The results show significant improvements by tuning an existing algorithm, with state-of-art performance.
引用
收藏
页码:135 / 142
页数:8
相关论文
共 50 条
  • [1] 6D Pose Estimation Based on 3D Edge Binocular Reprojection Optimization for Robotic Assembly
    Li, Dong
    Mu, Quan
    Yuan, Yilin
    Wu, Shiwei
    Tian, Ye
    Hong, Hualin
    Jiang, Qian
    Liu, Fei
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (12) : 8319 - 8326
  • [2] MONO6D: MONOCULAR VEHICLE 6D POSE ESTIMATION WITH 3D PRIORS
    Lyu, Yangxintong
    Royen, Remco
    Munteanu, Adrian
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 2187 - 2191
  • [3] HomebrewedDB: RGB-D Dataset for 6D Pose Estimation of 3D Objects
    Kaskman, Roman
    Zakharov, Sergey
    Shugurov, Ivan
    Ilic, Slobodan
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 2767 - 2776
  • [4] Learning 6D Object Pose Estimation Using 3D Object Coordinates
    Brachmann, Eric
    Krull, Alexander
    Michel, Frank
    Gumhold, Stefan
    Shotton, Jamie
    Rother, Carsten
    [J]. COMPUTER VISION - ECCV 2014, PT II, 2014, 8690 : 536 - 551
  • [5] 3D Point-to-Keypoint Voting Network for 6D Pose Estimation
    Hua, Weitong
    Guo, Jiaxin
    Wang, Yue
    Xiong, Rong
    [J]. 16TH IEEE INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2020), 2020, : 536 - 541
  • [6] 6D Object Pose Estimation from Approximate 3D Models for Orbital Robotics
    Ulmer, Maximilian
    Durner, Maximilian
    Sundermeyer, Martin
    Stoiber, Manuel
    Triebel, Rudolph
    [J]. 2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 10749 - 10756
  • [7] A Comprehensive Review on 3D Object Detection and 6D Pose Estimation With Deep Learning
    Hoque, Sabera
    Arafat, Md. Yasir
    Xu, Shuxiang
    Maiti, Ananda
    Wei, Yuchen
    [J]. IEEE ACCESS, 2021, 9 : 143746 - 143770
  • [8] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [9] A RGB-D feature fusion network for occluded object 6D pose estimation
    Song, Yiwei
    Tang, Chunhui
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (8-9) : 6309 - 6319
  • [10] 6D Pose Estimation for Precision Assembly
    Skeik, Ola
    Erden, Mustafa Suphi
    Kong, Xianwen
    [J]. 2022 IEEE 5TH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING APPLICATIONS AND SYSTEMS, IPAS, 2022,