Flow reversals in low-Prandtl-number Rayleigh-Benard convection controlled by horizontal circulations

被引:12
|
作者
Yanagisawa, Takatoshi [1 ]
Hamano, Yozo [1 ]
Sakuraba, Ataru [2 ]
机构
[1] Japan Agcy Marine Earth Sci & Technol, Dept Deep Earth Struct & Dynam Res, Yokosuka, Kanagawa 2370061, Japan
[2] Univ Tokyo, Dept Earth & Planetary Sci, Sch Sci, Tokyo, Japan
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 02期
关键词
D O I
10.1103/PhysRevE.92.023018
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We performed numerical simulations of Rayleigh-Benard convection of an electrically conductive low-Prandtl-number fluid under a uniform horizontal magnetic field. We reproduced the flow reversals observed in laboratory experiments previously reported by us. The flow pattern is moderately constrained, as the axes of convection rolls tend to align in the direction of the horizontal magnetic field. The flow reversals occur when the intensity of horizontal circulation in a vessel exceeds a certain value, which induces bending and reconnection of convection rolls and causes rearrangement of these rolls. The wave number selection mechanism is responsible for the instability leading to the flow reversals. The total heat flow drastically decreases at the occurrences of reversal, reflecting the reduction of roll flow velocity. The irregularity of the reversal sequence and the change in symmetry in the flow pattern during the reversals are consistent with that in cessation-led flow reversals.
引用
收藏
页数:6
相关论文
共 50 条
  • [22] Effect of Prandtl number on wavy rolls in Rayleigh-Benard convection
    Dan, Surajit
    Nandukumar, Yada
    Pal, Pinaki
    [J]. PHYSICA SCRIPTA, 2015, 90 (03)
  • [23] Rayleigh-Benard convection at high Rayleigh number and infinite Prandtl number: Asymptotics and numerics
    Vynnycky, M.
    Masuda, Y.
    [J]. PHYSICS OF FLUIDS, 2013, 25 (11)
  • [24] Significance of Prandtl Number on the Heat Transport and Flow Structure in Rotating Rayleigh-Benard Convection
    Venugopal, Vishnu T.
    De, Arnab Kumar
    Mishra, Pankaj Kumar
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2020, 142 (01):
  • [25] A discussion on finite-difference schemes for low Prandtl number Rayleigh-Benard convection
    Luo, X.
    Chen, W. -K.
    [J]. ADVANCED COMPUTATIONAL METHODS IN HEAT TRANSFER IX, 2006, 53 : 3 - +
  • [26] Spontaneous flow reversals in Rayleigh-Benard convection of a liquid metal
    Yanagisawa, Takatoshi
    Yamagishi, Yasuko
    Hamano, Yozo
    Tasaka, Yuji
    Takeda, Yasushi
    [J]. PHYSICAL REVIEW E, 2011, 83 (03):
  • [27] Direct Numerical Simulation of a Low Prandtl Number Rayleigh-Benard Convection in a Square Box
    Satbhai, Ojas
    Roy, Subhransu
    Ghosh, Sudipto
    [J]. JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2019, 11 (06)
  • [28] Prandtl and Rayleigh numbers dependences in Rayleigh-Benard convection
    Roche, PE
    Castaing, B
    Chabaud, B
    Hébral, B
    [J]. EUROPHYSICS LETTERS, 2002, 58 (05): : 693 - 698
  • [29] Bifurcations and chaos in large-Prandtl number Rayleigh-Benard convection
    Paul, Supriyo
    Wahi, Pankaj
    Verma, Mahendra K.
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2011, 46 (05) : 772 - 781
  • [30] Dynamic bifurcation theory of Rayleigh-Benard convection with infinite Prandtl number
    Park, Jungho
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2006, 6 (03): : 591 - 604