Prandtl and Rayleigh numbers dependences in Rayleigh-Benard convection

被引:69
|
作者
Roche, PE [1 ]
Castaing, B
Chabaud, B
Hébral, B
机构
[1] Univ Grenoble 1, Ctr Rech Tres Basses Temp, F-38042 Grenoble 9, France
[2] Ecole Normale Super, Phys Mat Condensee Lab, F-75231 Paris 5, France
[3] Ecole Normale Super Lyon, F-69364 Lyon 7, France
来源
EUROPHYSICS LETTERS | 2002年 / 58卷 / 05期
关键词
D O I
10.1209/epl/i2002-00405-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using low-temperature gaseous helium close to the critical point, we investigate the Prandtl-number dependence of the effective heat conductivity (Nusselt number) for a 1/2 aspect ratio Rayleigh-Benard cell. Very weak dependence is observed in the range 0.7 < Pr < 21; 2 x 10(8) < Ra < 2 x 10(10) : the absolute value of the average logarithmic slope delta = (partial derivativeln Nu/partial derivativeln Pr)(Ra) is smaller than 0.03. A bimodality of Nu, with 7% difference between the two sets of data, is observed, which could explain some discrepancies between precise previous experiments in this range.
引用
收藏
页码:693 / 698
页数:6
相关论文
共 50 条
  • [1] RAYLEIGH-BENARD CONVECTION AT LARGE PRANDTL NUMBERS WITH SHEAR
    RICHTER, F
    WHITEHEA.JA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (10): : 1159 - 1159
  • [2] Rayleigh-Benard convection-with rotation at small Prandtl numbers
    Bajaj, KMS
    Ahlers, G
    Pesch, W
    PHYSICAL REVIEW E, 2002, 65 (05):
  • [3] Experimental laminar Rayleigh-Benard convection in a cubical cavity at moderate Rayleigh and Prandtl numbers
    Pallares, J
    Arroyo, MP
    Grau, FX
    Giralt, F
    EXPERIMENTS IN FLUIDS, 2001, 31 (02) : 208 - 218
  • [4] On the nature of fluctuations in turbulent Rayleigh-Benard convection at large Prandtl numbers
    Wei, Ping
    Ahlers, Guenter
    JOURNAL OF FLUID MECHANICS, 2016, 802 : 203 - 244
  • [5] Experimental study of non-Boussinesq Rayleigh-Benard convection at high Rayleigh and Prandtl numbers
    Manga, M
    Weeraratne, D
    PHYSICS OF FLUIDS, 1999, 11 (10) : 2969 - 2976
  • [7] Heat transfer in porous media Rayleigh-Benard convection at various Prandtl numbers
    Zang, Xuehao
    Zhong, Jun
    Sun, Chao
    PHYSICS OF FLUIDS, 2023, 35 (07)
  • [8] Spiral-defect chaos in Rayleigh-Benard convection with small Prandtl numbers
    Liu, J
    Ahlers, G
    PHYSICAL REVIEW LETTERS, 1996, 77 (15) : 3126 - 3129
  • [9] Turbulent Rayleigh-Benard convection for a Prandtl number of 0.67
    Ahlers, Guenter
    Bodenschatz, Eberhard
    Funfschilling, Denis
    Hogg, James
    JOURNAL OF FLUID MECHANICS, 2009, 641 : 157 - 167
  • [10] Infinite Prandtl number limit of Rayleigh-Benard convection
    Wang, XM
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (10) : 1265 - 1282