Solving a Mixed Boundary Value Problem via an Integral Equation with Adjoint Generalized Neumann Kernel in Bounded Multiply Connected Regions

被引:3
|
作者
Al-Hatemi, Samer A. A. [1 ,2 ]
Murid, Ali H. M. [1 ,2 ]
Nasser, Mohamed M. S. [3 ]
机构
[1] Univ Teknol Malaysia, Fac Sci, Dept Math Sci, Johor Baharu 81310, Johor Dt, Malaysia
[2] Univ Teknol Malaysia, Ibnu Sina Inst Fundamental Sci Studies, Johor Baharu 81310, Johor Dt, Malaysia
[3] King Khalid Univ, Fac Sci, Dept Math, Abha, Saudi Arabia
关键词
Riemann-Hilbert Problem; Fredholm Integral Equation with Adjoint Generalized Neumann Kernel; Mixed Boundary Value Problem; Bounded Multiply Connected Region; PLANE POTENTIAL PROBLEMS; FAST SOLVER;
D O I
10.1063/1.4801169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we solve the mixed boundary value problem on bounded multiply connected region by using the method of boundary integral equation. Our approach in this paper is to reformulate the mixed boundary value problem into the form of Riemann-Hilbert problem. The Riemann-Hilbert problem is then solved using a uniquely solvable Fredholm integral equation on the boundary of the region. The kernel of this integral equation is the adjoint generalized Neumann kernel. As an examination of the proposed method, some numerical examples for some different test regions are presented.
引用
收藏
页码:508 / 517
页数:10
相关论文
共 50 条
  • [1] A boundary integral equation with the generalized Neumann kernel for a mixed boundary value problem in unbounded multiply connected regions
    Al-Hatemi, Samer A. A.
    Murid, Ali H. M.
    Nasser, Mohamed M. S.
    BOUNDARY VALUE PROBLEMS, 2013, : 1 - 17
  • [2] A boundary integral equation with the generalized Neumann kernel for a mixed boundary value problem in unbounded multiply connected regions
    Samer AA Al-Hatemi
    Ali HM Murid
    Mohamed MS Nasser
    Boundary Value Problems, 2013
  • [3] Solving a Mixed Boundary Value Problem via an Integral Equation with Generalized Neumann Kernel on Unbounded Multiply Connected Region
    Alhatemi, S. A. A.
    Murid, A. H. M.
    Nasser, M. M. S.
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2012, 8 (04): : 193 - 197
  • [4] Solving Robin problems in multiply connected regions via an integral equation with the generalized Neumann kernel
    Shwan HH Al-Shatri
    Ali HM Murid
    Munira Ismail
    Mukhiddin I Muminov
    Boundary Value Problems, 2016
  • [5] Solving Robin problems in multiply connected regions via an integral equation with the generalized Neumann kernel
    Al-Shatri, Shwan H. H.
    Murid, Ali H. M.
    Ismail, Munira
    Muminov, Mukhiddin I.
    BOUNDARY VALUE PROBLEMS, 2016,
  • [6] Solving Robin Problems in Bounded Doubly Connected Regions via an Integral Equation with the Generalized Neumann Kernel
    Al-Shatri, Shwan H. H.
    Murid, Ali H. M.
    Ismail, Munira
    ADVANCES IN INDUSTRIAL AND APPLIED MATHEMATICS, 2016, 1750
  • [7] Boundary integral equations with the generalized Neumann kernel for Laplace's equation in multiply connected regions
    Nasser, M. M. S.
    Murid, A. H. M.
    Ismail, M.
    Alejaily, E. M. A.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) : 4710 - 4727
  • [8] A Boundary Integral Equation with the Generalized Neumann Kernel for a Certain Class of Mixed Boundary Value Problem
    Nasser, Mohamed M. S.
    Murid, Ali H. M.
    Al-Hatemi, Samer A. A.
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [9] NUMERICAL CONFORMAL MAPPING VIA A BOUNDARY INTEGRAL EQUATION WITH THE ADJOINT GENERALIZED NEUMANN KERNEL
    Nasser, Mohamed M. S.
    Murid, Ali H. M.
    Sangawi, Ali W. K.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, 5 (01): : 96 - 117
  • [10] A Boundary Integral Equation for Conformal Mapping of Bounded Multiply Connected Regions
    Mohamed M. S. Nasser
    Computational Methods and Function Theory, 2009, 9 (1) : 127 - 143