Solving a Mixed Boundary Value Problem via an Integral Equation with Adjoint Generalized Neumann Kernel in Bounded Multiply Connected Regions

被引:3
|
作者
Al-Hatemi, Samer A. A. [1 ,2 ]
Murid, Ali H. M. [1 ,2 ]
Nasser, Mohamed M. S. [3 ]
机构
[1] Univ Teknol Malaysia, Fac Sci, Dept Math Sci, Johor Baharu 81310, Johor Dt, Malaysia
[2] Univ Teknol Malaysia, Ibnu Sina Inst Fundamental Sci Studies, Johor Baharu 81310, Johor Dt, Malaysia
[3] King Khalid Univ, Fac Sci, Dept Math, Abha, Saudi Arabia
关键词
Riemann-Hilbert Problem; Fredholm Integral Equation with Adjoint Generalized Neumann Kernel; Mixed Boundary Value Problem; Bounded Multiply Connected Region; PLANE POTENTIAL PROBLEMS; FAST SOLVER;
D O I
10.1063/1.4801169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we solve the mixed boundary value problem on bounded multiply connected region by using the method of boundary integral equation. Our approach in this paper is to reformulate the mixed boundary value problem into the form of Riemann-Hilbert problem. The Riemann-Hilbert problem is then solved using a uniquely solvable Fredholm integral equation on the boundary of the region. The kernel of this integral equation is the adjoint generalized Neumann kernel. As an examination of the proposed method, some numerical examples for some different test regions are presented.
引用
收藏
页码:508 / 517
页数:10
相关论文
共 50 条
  • [21] Mikhlin's Integral Equation and the Integral Equation with the Generalized Neumann Kernel on Simply Connected Domains
    Naqos, Samir
    Murid, Ali H. M.
    Nasser, Mohamed M. S.
    COMPUTATIONAL AND MATHEMATICAL METHODS, 2022, 2022
  • [22] On the integral equation of an adjoint boundary value problem of heat conduction
    Kosmakova, M. T.
    Romanovski, V. G.
    Orumbayeva, N. T.
    Tuleutaeva, Zh. M.
    Kasymova, L. Zh.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2019, 95 (03): : 33 - 43
  • [23] A FAST BOUNDARY INTEGRAL EQUATION METHOD FOR CONFORMAL MAPPING OF MULTIPLY CONNECTED REGIONS
    Nasser, Mohamed M. S.
    Al-Shihri, Fayzah A. A.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (03): : A1736 - A1760
  • [24] An Integral Equation Method for Conformal Mapping of Doubly Connected Regions Involving the Neumann Kernel
    Murid, Ali Hassan Mohamed
    Hu, Laey-Nee
    Mohamad, Mohd Nor
    MATEMATIKA, 2008, 24 (02) : 99 - 111
  • [25] A GENERALIZED CARLEMAN BOUNDARY-VALUE PROBLEM FOR MULTIPLY CONNECTED DOMAINS
    ELSHEIKH, MG
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1989, 20 (08): : 829 - 833
  • [26] INTEGRAL EQUATION METHOD FOR SOLVING MIXED BOUNDARY VALUE PROBLEMS
    JAIN, DL
    KANWAL, RP
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1971, 20 (04) : 642 - &
  • [27] BOUNDARY-VALUE PROBLEM FOR FUNCTIONS, ANALYTIC IN SOME MULTIPLY CONNECTED REGIONS
    LISOVETS, NI
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1984, (04): : 75 - 77
  • [28] A Neumann boundary value problem for a generalized Ginzburg-Landau equation
    Gao, HJ
    Gu, XH
    Bu, C
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 134 (2-3) : 553 - 560
  • [29] CONSTRUCTIVE METHOD FOR SOLVING THE EXTERNAL NEUMANN BOUNDARY VALUE PROBLEM FOR THE HELMHOLTZ EQUATION
    Abdullayev, Fuad A.
    Khalilov, Elnur H.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2018, 44 (01): : 62 - 69
  • [30] Iterative method for solving the Neumann boundary value problem for biharmonic type equation
    Dang, Quang A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 196 (02) : 634 - 643