A boundary integral equation with the generalized Neumann kernel for a mixed boundary value problem in unbounded multiply connected regions

被引:4
|
作者
Al-Hatemi, Samer A. A. [1 ]
Murid, Ali H. M. [1 ,2 ]
Nasser, Mohamed M. S. [3 ,4 ]
机构
[1] Univ Teknol Malaysia, Dept Math Sci, Fac Sci, Johor Baharu 81310, Utm, Malaysia
[2] Univ Teknol Malaysia, UTM Ctr Ind & Appl Math, Johor Baharu 81310, Utm, Malaysia
[3] King Khalid Univ, Dept Math, Fac Sci, Abha, Saudi Arabia
[4] Ibb Univ, Dept Math, Fac Sci, Ibb, Yemen
来源
关键词
mixed boundary value problem; RH problem; Fredholm integral equation; generalized Neumann kernel; PLANE POTENTIAL PROBLEMS; RIEMANN-HILBERT PROBLEM; LAPLACES-EQUATION; FAST SOLVER; DOMAINS; MAP;
D O I
10.1186/1687-2770-2013-54
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a new method for solving the mixed boundary value problem for the Laplace equation in unbounded multiply connected regions. All simple closed curves making up the boundary are divided into two sets. The Dirichlet condition is given for one set and the Neumann condition is given for the other set. The mixed problem is reformulated in the form of a Riemann-Hilbert (RH) problem which leads to a uniquely solvable Fredholm integral equation of the second kind. Three numerical examples are presented to show the effectiveness of the proposed method.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [1] A boundary integral equation with the generalized Neumann kernel for a mixed boundary value problem in unbounded multiply connected regions
    Samer AA Al-Hatemi
    Ali HM Murid
    Mohamed MS Nasser
    Boundary Value Problems, 2013
  • [2] Solving a Mixed Boundary Value Problem via an Integral Equation with Generalized Neumann Kernel on Unbounded Multiply Connected Region
    Alhatemi, S. A. A.
    Murid, A. H. M.
    Nasser, M. M. S.
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2012, 8 (04): : 193 - 197
  • [3] Solving a Mixed Boundary Value Problem via an Integral Equation with Adjoint Generalized Neumann Kernel in Bounded Multiply Connected Regions
    Al-Hatemi, Samer A. A.
    Murid, Ali H. M.
    Nasser, Mohamed M. S.
    PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B, 2013, 1522 : 508 - 517
  • [4] Boundary integral equations with the generalized Neumann kernel for Laplace's equation in multiply connected regions
    Nasser, M. M. S.
    Murid, A. H. M.
    Ismail, M.
    Alejaily, E. M. A.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) : 4710 - 4727
  • [5] A Boundary Integral Equation with the Generalized Neumann Kernel for a Certain Class of Mixed Boundary Value Problem
    Nasser, Mohamed M. S.
    Murid, Ali H. M.
    Al-Hatemi, Samer A. A.
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [6] Solving Robin problems in multiply connected regions via an integral equation with the generalized Neumann kernel
    Shwan HH Al-Shatri
    Ali HM Murid
    Munira Ismail
    Mukhiddin I Muminov
    Boundary Value Problems, 2016
  • [7] Solving Robin problems in multiply connected regions via an integral equation with the generalized Neumann kernel
    Al-Shatri, Shwan H. H.
    Murid, Ali H. M.
    Ismail, Munira
    Muminov, Mukhiddin I.
    BOUNDARY VALUE PROBLEMS, 2016,
  • [8] Boundary Integral Equations with the Generalized Neumann Kernel for the Neumann Problem
    Nasser, Mohamed M. S.
    MATEMATIKA, 2007, 23 (02) : 83 - 98
  • [9] Boundary integral equations with the generalized neumann kernel for robin problem in simply connected region
    Hamzah, A.S.A. (amirsyafiq89@ymail.com), 1600, CESER Publications, Post Box No. 113, Roorkee, 247667, India (44):
  • [10] THE SOLUTION OF A MIXED BOUNDARY VALUE PROBLEM FOR THE LAPLACE EQUATION IN A MULTIPLY CONNECTED DOMAIN
    Ivanshin, P. N.
    Shirokova, E. A.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2019, 8 (02): : 51 - 66