A boundary integral equation with the generalized Neumann kernel for a mixed boundary value problem in unbounded multiply connected regions

被引:4
|
作者
Al-Hatemi, Samer A. A. [1 ]
Murid, Ali H. M. [1 ,2 ]
Nasser, Mohamed M. S. [3 ,4 ]
机构
[1] Univ Teknol Malaysia, Dept Math Sci, Fac Sci, Johor Baharu 81310, Utm, Malaysia
[2] Univ Teknol Malaysia, UTM Ctr Ind & Appl Math, Johor Baharu 81310, Utm, Malaysia
[3] King Khalid Univ, Dept Math, Fac Sci, Abha, Saudi Arabia
[4] Ibb Univ, Dept Math, Fac Sci, Ibb, Yemen
来源
关键词
mixed boundary value problem; RH problem; Fredholm integral equation; generalized Neumann kernel; PLANE POTENTIAL PROBLEMS; RIEMANN-HILBERT PROBLEM; LAPLACES-EQUATION; FAST SOLVER; DOMAINS; MAP;
D O I
10.1186/1687-2770-2013-54
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a new method for solving the mixed boundary value problem for the Laplace equation in unbounded multiply connected regions. All simple closed curves making up the boundary are divided into two sets. The Dirichlet condition is given for one set and the Neumann condition is given for the other set. The mixed problem is reformulated in the form of a Riemann-Hilbert (RH) problem which leads to a uniquely solvable Fredholm integral equation of the second kind. Three numerical examples are presented to show the effectiveness of the proposed method.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [21] BOUNDARY-VALUE PROBLEM FOR FUNCTIONS, ANALYTIC IN SOME MULTIPLY CONNECTED REGIONS
    LISOVETS, NI
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1984, (04): : 75 - 77
  • [22] NUMERICAL CONFORMAL MAPPING VIA A BOUNDARY INTEGRAL EQUATION WITH THE ADJOINT GENERALIZED NEUMANN KERNEL
    Nasser, Mohamed M. S.
    Murid, Ali H. M.
    Sangawi, Ali W. K.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, 5 (01): : 96 - 117
  • [23] On a boundary value problem with shift for an equation of mixed type in an unbounded domain
    Repin, O. A.
    Kumykova, S. K.
    DIFFERENTIAL EQUATIONS, 2012, 48 (08) : 1127 - 1136
  • [24] On a boundary value problem with shift for an equation of mixed type in an unbounded domain
    O. A. Repin
    S. K. Kumykova
    Differential Equations, 2012, 48 : 1127 - 1136
  • [25] Integral Equation with the Generalized Neumann Kernel for Computing Green's function on Simply Connected Regions
    Murid, Ali H. M.
    Alagele, Mohmed M. A.
    Nasser, Mohamed M. S.
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2013, 9 (03): : 161 - 166
  • [26] FAST SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH THE GENERALIZED NEUMANN KERNEL
    Nasser, Mohamed M. S.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2015, 44 : 189 - 229
  • [27] Fast solution of boundary integral equations with the generalized Neumann kernel
    Nasser, Mohamed M. S.
    Electronic Transactions on Numerical Analysis, 2015, 44 : 189 - 229
  • [28] ON AN INTEGRAL EQUATION OF SOME BOUNDARY VALUE PROBLEMS FOR HARMONIC FUNCTIONS IN PLANE MULTIPLY CONNECTED DOMAINS WITH NONREGULAR BOUNDARY
    MIKHAILOV, SE
    MATHEMATICS OF THE USSR-SBORNIK, 1983, 121 (3-4): : 525 - 536
  • [29] Mikhlin's Integral Equation and the Integral Equation with the Generalized Neumann Kernel on Simply Connected Domains
    Naqos, Samir
    Murid, Ali H. M.
    Nasser, Mohamed M. S.
    COMPUTATIONAL AND MATHEMATICAL METHODS, 2022, 2022
  • [30] Solving Robin Problems in Bounded Doubly Connected Regions via an Integral Equation with the Generalized Neumann Kernel
    Al-Shatri, Shwan H. H.
    Murid, Ali H. M.
    Ismail, Munira
    ADVANCES IN INDUSTRIAL AND APPLIED MATHEMATICS, 2016, 1750