Doubly robust estimation in generalized linear models

被引:14
|
作者
Orsini, Nicola [1 ,2 ]
Bellocco, Rino [3 ,4 ]
Sjolander, Arvid [4 ]
机构
[1] Karolinska Inst, Inst Environm Med, Unit Biostat, S-10401 Stockholm, Sweden
[2] Karolinska Inst, Inst Environm Med, Unit Nutr Epidemiol, S-10401 Stockholm, Sweden
[3] Univ Milano Bicocca, Dept Stat & Quantitat Methods, Milan, Italy
[4] Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden
来源
STATA JOURNAL | 2013年 / 13卷 / 01期
基金
瑞典研究理事会;
关键词
st0290; drglm; doubly robust; generalized linear model;
D O I
10.1177/1536867X1301300113
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
A common aim of epidemiological research is to assess the association between a particular exposure and a particular outcome, controlling for a set of additional covariates. This is often done by using a regression model for the outcome, conditional on exposure and covariates. A commonly used class of models is the generalized linear models. The model parameters are typically estimated through maximum likelihood. If the model is correct, then the maximum likelihood estimator is consistent but may otherwise be inconsistent. Recently, a new class of estimators known as doubly robust estimators has been proposed. These estimators use two regression models, one for the outcome and one for the exposure, and are consistent if either model is correct, not necessarily both. Thus doubly robust estimators give the analyst two chances instead of only one to make valid inference. In this article, we describe a new Stata command, drglm, that implements the most common doubly robust estimators for generalized linear models.
引用
收藏
页码:185 / 205
页数:21
相关论文
共 50 条
  • [21] Robust Inference in Generalized Linear Models
    Alqallaf, Fatemah
    Agostinelli, Claudio
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (09) : 3053 - 3073
  • [22] Robust inference for generalized linear models
    Cantoni, E
    Ronchetti, E
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (455) : 1022 - 1030
  • [23] Bounded-influence robust estimation in generalized linear latent variable models
    Moustaki, Irini
    Victoria-Feser, Maria-Pia
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (474) : 644 - 653
  • [24] Robust Estimation for Generalized Additive Models
    Wong, Raymond K. W.
    Yao, Fang
    Lee, Thomas C. M.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2014, 23 (01) : 270 - 289
  • [25] Doubly robust estimation of partially linear models for longitudinal data with dropouts and measurement error in covariates
    Lin, Huiming
    Qin, Guoyou
    Zhang, Jiajia
    Fung, Wing K.
    [J]. STATISTICS, 2018, 52 (01) : 84 - 98
  • [26] Robust Estimation of Self-Exciting Generalized Linear Models With Application to Neuronal Modeling
    Kazemipour, Abbas
    Wu, Min
    Babadi, Behtash
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (14) : 3733 - 3748
  • [27] Bayesian Generalized Horseshoe Estimation of Generalized Linear Models
    Schmidt, Daniel F.
    Makalic, Enes
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT II, 2020, 11907 : 598 - 613
  • [28] Robust inference in generalized partially linear models
    Boente, Graciela
    Rodriguez, Daniela
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (12) : 2942 - 2966
  • [29] Robust estimates in generalized partially linear models
    Boente, Graciela
    He, Xuming
    Zhou, Jianhui
    [J]. ANNALS OF STATISTICS, 2006, 34 (06): : 2856 - 2878
  • [30] Robust and accurate inference for generalized linear models
    Lo, Serigne N.
    Ronchetti, Elvezio
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (09) : 2126 - 2136