Uncertainty Set Prediction of Aggregated Wind Power Generation based on Bayesian LSTM and Spatio-Temporal Analysis

被引:1
|
作者
Li, Xiaopeng [1 ]
Wu, Jiang [1 ]
Xu, Zhanbo [1 ]
Liu, Kun [1 ]
Yu, Jun [1 ]
Guan, Xiaohong [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, MOE KLINNS Lab, Xian 710049, Shanxi, Peoples R China
[2] Tsinghua Univ, Ctr Intelligent & Networked Syst CFINS, Dept Automat, TNLIST, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
SPEED PREDICTION; GAUSSIAN PROCESS; ENSEMBLE; MODEL;
D O I
10.1109/CASE49439.2021.9551610
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Aggregated stochastic characteristics of geographically distributed wind generation will provide valuable information for secured and economical system operation in electricity markets. This paper focuses on the uncertainty set prediction of the aggregated generation of geographically distributed wind farms. A Spatio-temporal model is proposed to learn the dynamic features from partial observation in near-surface wind fields of neighboring wind farms. We use Bayesian LSTM, a probabilistic prediction model, to obtain the uncertainty set of the generation in individual wind farms. Then, spatial correlation between different wind farms is presented to correct the output results. Numerical testing results based on the actual data with 6 wind farms in northwest China show that the uncertainty set of aggregated wind generation of distributed wind farms is less volatile than that of a single wind farm.
引用
下载
收藏
页码:361 / 366
页数:6
相关论文
共 50 条
  • [31] Exploiting Spatio-Temporal Dependencies for RNN-based Wind Power Forecasts
    Wilms, Henning
    Cupelli, Marco
    Monti, Antonello
    Gross, Thorsten
    2019 IEEE PES GTD GRAND INTERNATIONAL CONFERENCE AND EXPOSITION ASIA (GTD ASIA), 2019, : 921 - 926
  • [32] Spatio-temporal Convolutional Network Based Power Forecasting of Multiple Wind Farms
    Dong, Xiaochong
    Sun, Yingyun
    Li, Ye
    Wang, Xinying
    Pu, Tianjiao
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2022, 10 (02) : 388 - 398
  • [33] Short-Term Wind Power Prediction Based on WVMD and Spatio-Temporal Dual-Stream Network
    Zhao, Yingnan
    Ruan, Yuyuan
    Peng, Zhen
    Computers, Materials and Continua, 2024, 81 (01): : 549 - 566
  • [34] A Bayesian Approach for the Multifractal Analysis of Spatio-Temporal Data
    Combrexelle, S.
    Wendt, H.
    Tourneret, J. -Y.
    Altmann, Y.
    McLaughlin, S.
    Abry, P.
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING, (IWSSIP 2016), 2016, : 331 - 334
  • [35] Bayesian Modelling and Analysis of Spatio-Temporal Neuronal Networks
    Rigat, Fabio
    de Gunst, Mathisca
    van Pelt, Jaap
    BAYESIAN ANALYSIS, 2006, 1 (04): : 733 - 764
  • [36] Bayesian joint spatio-temporal analysis of multiple diseases
    Gomez-Rubio, Virgilio
    Palmi-Perales, Francisco
    Lopez-Abente, Gonzalo
    Ramis-Prieto, Rebeca
    Fernandez-Navarro, Pablo
    SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2019, 43 (01) : 51 - 74
  • [37] Bayesian spatio-temporal analysis of breastfeeding practices in Ghana
    Gayawan, Ezra
    Adjei, Christiana Nyarko
    GEOJOURNAL, 2021, 86 (04) : 1943 - 1955
  • [38] Variable Selection Мethod based on Spatio-temporal Group Lasso and Нierarchical Bayesian Spatio-temporal Мodel
    Wang L.
    Kang Z.
    Journal of Geo-Information Science, 2023, 25 (07) : 1312 - 1324
  • [39] Bayesian spatio-temporal analysis of breastfeeding practices in Ghana
    Ezra Gayawan
    Christiana Nyarko Adjei
    GeoJournal, 2021, 86 : 1943 - 1955
  • [40] Bayesian spatio-temporal models based on discrete convolutions
    Sanso, Bruno
    Schmidt, Alexandra M.
    Nobre, Aline A.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2008, 36 (02): : 239 - 258