Hydrothermal alteration associated with the Chicxulub impact crater upper peak-ring breccias

被引:23
|
作者
Simpson, S. L. [1 ]
Osinski, G. R. [1 ]
Longstaffe, F. J. [1 ]
Schmieder, M. [2 ]
Kring, D. A. [2 ]
机构
[1] Univ Western Ontario, Inst Earth & Space Explorat, Dept Earth Sci, London, ON N6A 3K7, Canada
[2] Univ Space Res Assoc, Lunar & Planetary Inst, Houston, TX 77058 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Chicxulub impact; impact generated hydrothermal systems; impact cratering; astrobiology; GLASS; YAXCOPOIL-1; BOREHOLE; FEATURES; YUCATAN; EVENT; ROCKS; CORE; LIFE;
D O I
10.1016/j.epsl.2020.116425
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The 66 Ma, similar to 180 km Chicxulub impact structure in the northern Yucatan peninsula and southern Gulf of Mexico is the best-preserved large impact crater on Earth with a well-developed peak ring. The most recent drilling campaign took place offshore during the joint International Ocean Discovery Program - International Continental Scientific Drilling Program (IODP-ICDP) Expedition 364 at site M0077A (21.45 degrees N, 89.95 degrees W) and recovered similar to 830 m of continuous core. Initial examination revealed that the peak-ring comprises four main lithological units (from the base upwards): crystalline basement granitoid rocks (Unit 4); a thin layer of impact melt rocks (Units 3A and B); melt-bearing breccias (Units 2A-C); and post-impact sedimentary rocks (Unit 1). Preliminary analysis of the drill core indicated that hydrothermal alteration has affected all lithologies and is especially pervasive in the melt-bearing breccias of Unit 2 (721.6 to 617.33 meters below sea floor, mbsf). Here we present the first detailed investigation of hydrothermal alteration within the melt-bearing breccias. Alteration phases are predominantly Fe-Mg clay minerals, zeolites, alkali feldspars, calcite and minor sulfides, sulfates, opal and Fe-Ti oxides. Alteration is especially intense proximal to lithologic contacts, particularly at the base of subunit 2B where there is an abrupt increase in host rock porosity similar to 30 m above the impact melt rocks. The pervasiveness of clay minerals and zeolites is attributed to the high amounts of devitrified silicate glass throughout Unit 2. The phases preserved here are consistent with the findings of previous hydrothermal studies in other areas of the Chicxulub structure, and suggest an evolving water-rock system that was alkaline-saline, comparable to seawater-volcanic glass alteration. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Secondary alteration of the impactite and mineralization in the basal tertiary sequence, Yaxcopoil-1, Chicxulub impact crater, Mexico
    Ames, DE
    Kjarsgaard, IM
    Pope, KO
    Dressler, B
    Pilkington, M
    METEORITICS & PLANETARY SCIENCE, 2004, 39 (07) : 1145 - 1167
  • [42] Search for a meteoritic component within the impact melt rocks of the Chicxulub impact structure peak ring, Mexico
    Feignon, Jean-Guillaume
    Schulz, Toni
    Ferriere, Ludovic
    Goderis, Steven
    de Graaff, Sietze J.
    Kaskes, Pim
    Dehais, Thomas
    Claeys, Philippe
    Koeberl, Christian
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2022, 323 : 74 - 101
  • [43] Significance of Secondary Fe-Oxide and Fe-Sulfide Minerals in Upper Peak Ring Suevite from the Chicxulub Impact Structure
    Verhagen, Christina M.
    Jung, Ji-In
    Tikoo, Sonia M.
    Wittmann, Axel
    Kring, David A.
    Brachfeld, Stefanie
    Wu, Laying
    Burns, Dale H.
    Gulick, Sean P. S.
    MINERALS, 2023, 13 (03)
  • [44] TESTING A MODEL OF IMPACT-GENERATED HYDROTHERMAL SYSTEMS WITH IODP-ICDP EXPEDITION 364 TO THE CHICXULUB IMPACT CRATER.
    Kring, D. A.
    Schmieder, M.
    Riller, U.
    Simpson, S. L.
    Osinski, G. R.
    Cockell, C.
    Coolen, J. L.
    METEORITICS & PLANETARY SCIENCE, 2017, 52 : A179 - A179
  • [45] Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364
    Christeson, G. L.
    Gulick, S. P. S.
    Morgan, J., V
    Gebhardt, C.
    Kring, D. A.
    Le Ber, E.
    Lofi, J.
    Nixon, C.
    Poelchau, M.
    Rae, A. S. P.
    Rebolledo-Vieyra, M.
    Riller, U.
    Schmitt, D. R.
    Wittmann, A.
    Bralower, T. J.
    Chenot, E.
    Claeys, P.
    Cockell, C. S.
    Coolen, M. J. L.
    Ferriere, L.
    Green, S.
    Goto, K.
    Jones, H.
    Lowery, C. M.
    Mellett, C.
    Ocampo-Torres, R.
    Perez-Cruz, L.
    Pickersgill, A. E.
    Rasmussen, C.
    Sato, H.
    Smit, J.
    Tikoo, S. M.
    Tomioka, N.
    Urrutia-Fucugauchi, J.
    Whalen, M. T.
    Xiao, L.
    Yamaguchi, K. E.
    EARTH AND PLANETARY SCIENCE LETTERS, 2018, 495 : 1 - 11
  • [46] Chicxulub crater post-impact hydrothermal activity - evidence from Paleocene carbonates in the Santa Elena borehole
    Escobar-Sanchez, J. E.
    Urrutia-Fucugauchi, J.
    GEOFISICA INTERNACIONAL, 2010, 49 (02): : 97 - 106
  • [47] The transition from complex crater to peak-ring basin on the Moon: New observations from the Lunar Orbiter Laser Altimeter (LOLA) instrument
    Baker, David M. H.
    Head, James W.
    Fassett, Caleb I.
    Kadish, Seth J.
    Smith, Dave E.
    Zuber, Maria T.
    Neumann, Gregory A.
    ICARUS, 2011, 214 (02) : 377 - 393
  • [48] Insights into the morphology, geometry, and post-impact erosion of the Araguainha peak-ring structure, central Brazil
    Lana, C.
    Filho, C. R. Souza
    Marangoni, Y. R.
    Yokoyama, E.
    Trindade, R. I. F.
    Tohver, E.
    Reimold, W. U.
    GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 2007, 119 (9-10) : 1135 - 1150
  • [49] The Apollo peak-ring impact basin: Insights into the structure and evolution of the South Pole-Aitken basin
    Potter, Ross W. K.
    Head, James W.
    Guo, Dijun
    Liu, Jianzhong
    Xiao, Long
    ICARUS, 2018, 306 : 139 - 149
  • [50] Peak-ring rim collapse accommodated by impact melt-filled transfer faults, Sudbury impact structure, Canada
    Scott, RG
    Benn, K
    GEOLOGY, 2001, 29 (08) : 747 - 750