Localized Image Blur Removal through Non-Parametric Kernel Estimation

被引:8
|
作者
Schelten, Kevin [1 ]
Roth, Stefan [1 ]
机构
[1] Tech Univ Darmstadt, Dept Comp Sci, Darmstadt, Germany
关键词
D O I
10.1109/ICPR.2014.131
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address the problem of estimating and removing localized image blur, as it for example arises from moving objects in a scene, or when the depth of field is insufficient to sharply render all objects of interest. Unlike the case of camera shake, such blur changes abruptly at the object boundaries. To cope with this, we propose an automated sharp image recovery method that simultaneously determines blurred regions and estimates their responsible blur kernels. To address a wide range of different scenarios, our model is not restricted to a discrete set of candidate blurs, but allows for arbitrary, non-parametric blur kernels. Moreover, our approach does not require specialized hardware, an alpha matte, or user annotation of the blurred region. Unlike previous methods, we show that localized blur estimation can be accomplished by incorporating a pixel-wise latent variable to indicate the active blur kernel. Furthermore, we generalize the marginal likelihood technique of blind deblurring to the case of localized blur. Specifically, we integrate out the latent image derivatives to permit marginal density estimates of both blur kernels and their regions of influence. We obtain sharp images in applications to both object motion blur and defocus blur removal. Quantitative results on two novel datasets as well as qualitative results comparing to a range of specialized methods demonstrate the versatility and effectiveness of our non-parametric approach.
引用
下载
收藏
页码:702 / 707
页数:6
相关论文
共 50 条
  • [41] Non-parametric estimation of the residual distribution
    Akritas, MG
    Van Keilegom, I
    SCANDINAVIAN JOURNAL OF STATISTICS, 2001, 28 (03) : 549 - 567
  • [42] Non-parametric estimation of morphological lopsidedness
    Giese, Nadine
    van der Hulst, Thijs
    Serra, Paolo
    Oosterloo, Tom
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 461 (02) : 1656 - 1673
  • [43] Non-parametric estimation of signals vectors
    Marchuk, L.A.
    Giniyatullin, N.F.
    Borisov, K.S.
    Izvestiya Vysshikh Uchebnykh Zavedenij. Radioelektronika, 2001, 44 (09): : 31 - 39
  • [44] NON-PARAMETRIC ESTIMATION OF CONDITIONAL QUANTILES
    SAMANTA, M
    STATISTICS & PROBABILITY LETTERS, 1989, 7 (05) : 407 - 412
  • [45] Density estimation with non-parametric methods
    Fadda, D
    Slezak, E
    Bijaoui, A
    ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1998, 127 (02): : 335 - 352
  • [46] Non-Parametric Estimation of Technical Progress
    Kevin J. Fox
    Journal of Productivity Analysis, 1998, 10 : 235 - 250
  • [47] Non-parametric estimation of technical progress
    Fox, KJ
    JOURNAL OF PRODUCTIVITY ANALYSIS, 1998, 10 (03) : 235 - 250
  • [48] NON-PARAMETRIC ESTIMATION OF ECONOMETRIC FUNCTIONALS
    ULLAH, A
    CANADIAN JOURNAL OF ECONOMICS-REVUE CANADIENNE D ECONOMIQUE, 1988, 21 (03): : 625 - 658
  • [49] Detection threshold for non-parametric estimation
    Atto, Abdourrahmane M.
    Pastor, Dominique
    Mercier, Gregoire
    SIGNAL IMAGE AND VIDEO PROCESSING, 2008, 2 (03) : 207 - 223
  • [50] PARAMETRIC VERSUS NON-PARAMETRIC COMPLEX IMAGE ANALYSIS
    Singh, Jagmal
    Soccorsi, Matteo
    Datcu, Mihai
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 1311 - 1314