Estimation of parameters and delay in driver models using L1-regularization

被引:0
|
作者
Hosseini, SeyedMehrdad [1 ]
Koroglu, Hakan [1 ]
Sjoberg, Jonas [1 ]
机构
[1] Chalmers Univ Technol, Dept Signals & Syst, Gothenburg, Sweden
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new method is proposed for driver reaction time (delay) and parameter estimation using a generic lateral model that is expressed in terms of the steering angle, yaw rate and lateral lane offset. The idea behind the presented method is to reformulate the original driver model with an overparametrized one and then use the L-1-regularization method to enforce sparsity and thereby estimate the delay together with the parameters of the original model. A sequential algorithm is then presented to obtain better estimates of the parameters with a model in which the delay is fixed.
引用
收藏
页码:945 / 950
页数:6
相关论文
共 50 条
  • [41] l1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors
    Medeiros, Marcelo C.
    Mendes, Eduardo F.
    JOURNAL OF ECONOMETRICS, 2016, 191 (01) : 255 - 271
  • [42] Adaptive l1-regularization for short-selling control in portfolio selection
    Corsaro, Stefania
    De Simone, Valentina
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 72 (02) : 457 - 478
  • [43] Convergence rates for l1-regularization without injectivity-type assumptions
    Flemming, Jens
    INVERSE PROBLEMS, 2016, 32 (09)
  • [44] Semismooth Newton and quasi-Newton methods in weighted l1-regularization
    Pham Quy Muoi
    Dinh Nho Hao
    Maass, Peter
    Pidcock, Michael
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2013, 21 (05): : 665 - 693
  • [45] Targeted L1-Regularization and Joint Modeling of Neural Networks for Causal Inference
    Rostami, Mehdi
    Saarela, Olli
    ENTROPY, 2022, 24 (09)
  • [46] Fast Quantitative Susceptibility Mapping with L1-Regularization and Automatic Parameter Selection
    Bilgic, Berkin
    Fan, Audrey P.
    Polimeni, Jonathan R.
    Cauley, Stephen F.
    Bianciardi, Marta
    Adalsteinsson, Elfar
    Wald, Lawrence L.
    Setsompop, Kawin
    MAGNETIC RESONANCE IN MEDICINE, 2014, 72 (05) : 1444 - 1459
  • [47] Injectivity and weak*-to-weak continuity suffice for convergence rates in l1-regularization
    Flemming, Jens
    Gerth, Daniel
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2018, 26 (01): : 85 - 94
  • [48] Comparison of Tolerant Fuzzy c-Means Clustering with L2- and L1-Regularization
    Hamasuna Yukihiro
    Endo Yasunori
    Miyamoto Sadaaki
    2009 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING ( GRC 2009), 2009, : 197 - +
  • [49] Elastic-net regularization versus l1-regularization for linear inverse problems with quasi-sparse solutions
    Chen, De-Han
    Hofmann, Bernd
    Zou, Jun
    INVERSE PROBLEMS, 2017, 33 (01)
  • [50] Bayesian estimation of regularization parameters for deformable surface models
    Cunningham, GS
    Lehovich, A
    Hanson, KM
    MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 : 562 - 573