Estimation of parameters and delay in driver models using L1-regularization

被引:0
|
作者
Hosseini, SeyedMehrdad [1 ]
Koroglu, Hakan [1 ]
Sjoberg, Jonas [1 ]
机构
[1] Chalmers Univ Technol, Dept Signals & Syst, Gothenburg, Sweden
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new method is proposed for driver reaction time (delay) and parameter estimation using a generic lateral model that is expressed in terms of the steering angle, yaw rate and lateral lane offset. The idea behind the presented method is to reformulate the original driver model with an overparametrized one and then use the L-1-regularization method to enforce sparsity and thereby estimate the delay together with the parameters of the original model. A sequential algorithm is then presented to obtain better estimates of the parameters with a model in which the delay is fixed.
引用
收藏
页码:945 / 950
页数:6
相关论文
共 50 条
  • [31] On l1-Regularization in Light of Nashed's Ill-Posedness Concept
    Flemming, Jens
    Hofmann, Bernd
    Veselic, Ivan
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2015, 15 (03) : 279 - 289
  • [32] Object Tracking via 2DPCA and l1-Regularization
    Wang, Dong
    Lu, Huchuan
    IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (11) : 711 - 714
  • [33] Convergence rates in l1-regularization when the basis is not smooth enough
    Flemming, Jens
    Hegland, Markus
    APPLICABLE ANALYSIS, 2015, 94 (03) : 464 - 476
  • [34] A unified approach to convergence rates for l1-regularization and lacking sparsity
    Flemming, Jens
    Hofmann, Bernd
    Veselic, Ivan
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2016, 24 (02): : 139 - 148
  • [35] On Tolerant Fuzzy c-Means Clustering with L1-Regularization
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 1152 - 1157
  • [36] ROBUST UNCERTAINTY QUANTIFICATION USING PRECONDITIONED LEAST-SQUARES POLYNOMIAL APPROXIMATIONS WITH l1-REGULARIZATION
    Van Langenhove, J. W.
    Lucor, D.
    Belme, A.
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2016, 6 (01) : 57 - 77
  • [37] Direct Incorporation of L1-Regularization into Generalized Matrix Learning Vector Quantization
    Lischke, Falko
    Neumann, Thomas
    Hellbach, Sven
    Villmann, Thomas
    Boehme, Hans-Joachim
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2018, PT I, 2018, 10841 : 657 - 667
  • [38] L1-Regularization Based EEG Feature Learning for Detecting Epileptic Seizure
    Hussein, Ramy
    Wang, Z. Jane
    Ward, Rabab
    2016 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2016, : 1171 - 1175
  • [39] Binarized l1-Regularization Parameters Enhanced Stripe-Wise Optimization Algorithm for Efficient Neural Network Optimization
    Ma, Xiaotian
    Sun, Pu
    Luo, Shiyi
    Peng, Qidi
    Demara, Ronald F.
    Bai, Yu
    IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN INDUSTRIAL ELECTRONICS, 2024, 5 (02): : 790 - 799
  • [40] Accelerating Cross-Validation in Multinomial Logistic Regression with l1-Regularization
    Obuchi, Tomoyuki
    Kabashima, Yoshiyuki
    JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 19