ChIP-PED enhances the analysis of ChIP-seq and ChIP-chip data

被引:11
|
作者
Wu, George [1 ]
Yustein, Jason T. [2 ]
McCall, Matthew N. [3 ]
Zilliox, Michael [4 ]
Irizarry, Rafael A. [1 ]
Zeller, Karen [5 ]
Dang, Chi V. [6 ]
Ji, Hongkai [1 ]
机构
[1] Johns Hopkins Univ, Dept Biostat, Bloomberg Sch Publ Hlth, Baltimore, MD 21205 USA
[2] Baylor Coll Med, Texas Childrens Canc Ctr, Dept Pediat, Houston, TX 77030 USA
[3] Univ Rochester, Dept Biostat & Computat Biol, Rochester, NY 14611 USA
[4] Emory Univ, Sch Med, Dept Microbiol & Immunol, Atlanta, GA 30322 USA
[5] Johns Hopkins Univ, Sch Med, Dept Med, Baltimore, MD 21205 USA
[6] Univ Penn, Abramson Canc Ctr, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
GENE-EXPRESSION; TRANSCRIPTION FACTOR; CHROMATIN-IMMUNOPRECIPITATION; BINDING-SITES; DIFFERENTIATION; REPOSITORIES; INTERFERON; NETWORK; TARGETS; STAT3;
D O I
10.1093/bioinformatics/btt108
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Although chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) or tiling array hybridization (ChIP-chip) is increasingly used to map genome-wide-binding sites of transcription factors (TFs), it still remains difficult to generate a quality ChIPx (i.e. ChIP-seq or ChIP-chip) dataset because of the tremendous amount of effort required to develop effective antibodies and efficient protocols. Moreover, most laboratories are unable to easily obtain ChIPx data for one or more TF(s) in more than a handful of biological contexts. Thus, standard ChIPx analyses primarily focus on analyzing data from one experiment, and the discoveries are restricted to a specific biological context. Results: We propose to enrich this existing data analysis paradigm by developing a novel approach, ChIP-PED, which superimposes ChIPx data on large amounts of publicly available human and mouse gene expression data containing a diverse collection of cell types, tissues and disease conditions to discover new biological contexts with potential TF regulatory activities. We demonstrate ChIP-PED using a number of examples, including a novel discovery that MYC, a human TF, plays an important functional role in pediatric Ewing sarcoma cell lines. These examples show that ChIP-PED increases the value of ChIPx data by allowing one to expand the scope of possible discoveries made from a ChIPx experiment.
引用
收藏
页码:1182 / 1189
页数:8
相关论文
共 50 条
  • [31] A Statistical Framework for the Analysis of ChIP-Seq Data
    Kuan, Pei Fen
    Chung, Dongjun
    Pan, Guangjin
    Thomson, James A.
    Stewart, Ron
    Keles, Suenduez
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (495) : 891 - 903
  • [32] BayesPeak: Bayesian analysis of ChIP-seq data
    Christiana Spyrou
    Rory Stark
    Andy G Lynch
    Simon Tavaré
    [J]. BMC Bioinformatics, 10
  • [33] A hidden Ising model for ChIP-chip data analysis
    Mo, Qianxing
    Liang, Faming
    [J]. BIOINFORMATICS, 2010, 26 (06) : 777 - 783
  • [34] Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data
    Carroll, Thomas S.
    Liang, Ziwei
    Salama, Rafik
    Stark, Rory
    de Santiago, Ines
    [J]. FRONTIERS IN GENETICS, 2014, 5
  • [35] A decade of ChIP-seq
    Marinov, Georgi K.
    [J]. BRIEFINGS IN FUNCTIONAL GENOMICS, 2018, 17 (02) : 77 - 79
  • [36] Normalization of ChIP-seq data with control
    Kun Liang
    Sündüz Keleş
    [J]. BMC Bioinformatics, 13
  • [37] Normalization of ChIP-seq data with control
    Liang, Kun
    Keles, Sunduz
    [J]. BMC BIOINFORMATICS, 2012, 13
  • [38] Normalization and experimental design for ChIP-chip data
    Peng, Shouyong
    Alekseyenko, Artyom A.
    Larschan, Erica
    Kuroda, Mitzi I.
    Park, Peter J.
    [J]. BMC BIOINFORMATICS, 2007, 8 (1)
  • [39] The ChIP-Seq tools and web server: a resource for analyzing ChIP-seq and other types of genomic data
    Giovanna Ambrosini
    René Dreos
    Sunil Kumar
    Philipp Bucher
    [J]. BMC Genomics, 17
  • [40] The ChIP-Seq tools and web server: a resource for analyzing ChIP-seq and other types of genomic data
    Ambrosini, Giovanna
    Dreos, Rene
    Kumar, Sunil
    Bucher, Philipp
    [J]. BMC GENOMICS, 2016, 17