Geometrically exact analysis of initially curved rods

被引:0
|
作者
Pimenta, PM [1 ]
机构
[1] UNIV SAO PAULO,DEPT STRUCT & FDN ENGN,BR-05508 SAO PAULO,BRAZIL
关键词
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
引用
收藏
页码:99 / 108
页数:10
相关论文
共 50 条
  • [41] A finite element approach to the chaotic motion of geometrically exact rods undergoing in-plane deformations
    Sansour, C
    Sansour, J
    Wriggers, P
    NONLINEAR DYNAMICS, 1996, 11 (02) : 189 - 212
  • [42] A locking-free finite element formulation and reduced models for geometrically exact Kirchhoff rods
    Meier, Christoph
    Popp, Alexander
    Wall, Wolfgang A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 290 : 314 - 341
  • [43] STABILITY OF COUPLED RIGID BODY AND GEOMETRICALLY EXACT RODS - BLOCK DIAGONALIZATION AND THE ENERGY MOMENTUM METHOD
    SIMO, JC
    POSBERGH, TA
    MARSDEN, JE
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 193 (06): : 279 - 360
  • [44] A formulation and implementation of geometrically exact curved beam elements incorporating finite strains and finite rotations
    R. K. Kapania
    J. Li
    Computational Mechanics, 2003, 30 : 444 - 459
  • [45] On a geometrically exact curved/twisted beam theory under rigid cross-section assumption
    R. K. Kapania
    J. Li
    Computational Mechanics, 2003, 30 : 428 - 443
  • [46] Geometrically exact curved beam element using internal force field defined in deformed configuration
    Li, Wenxiong
    Ma, Haitao
    Gao, Wei
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2017, 89 : 116 - 126
  • [47] A formulation and implementation of geometrically exact curved beam elements incorporating finite strains and finite rotations
    Kapania, RK
    Li, J
    COMPUTATIONAL MECHANICS, 2003, 30 (5-6) : 444 - 459
  • [48] On a geometrically exact curved/twisted beam theory under rigid cross-section assumption
    Kapania, RK
    Li, J
    COMPUTATIONAL MECHANICS, 2003, 30 (5-6) : 428 - 443
  • [49] Geometrically exact static isogeometric analysis of arbitrarily curved plane Bernoulli-Euler beam (vol 170, 108539, 2022)
    Borkovic, A.
    Marussig, B.
    Radenkovic, G.
    THIN-WALLED STRUCTURES, 2022, 173
  • [50] Nonlinear dynamics of three-dimensional curved geometrically exact beams by a quadrature element formulation
    Liu, Bo
    Ji, Yi
    NONLINEAR DYNAMICS, 2024, 112 (17) : 14925 - 14958