Geometrically exact analysis of initially curved rods

被引:0
|
作者
Pimenta, PM [1 ]
机构
[1] UNIV SAO PAULO,DEPT STRUCT & FDN ENGN,BR-05508 SAO PAULO,BRAZIL
关键词
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
引用
收藏
页码:99 / 108
页数:10
相关论文
共 50 条
  • [11] Dynamical problems for geometrically exact theories of nonlinearly viscoelastic rods
    Antman, SS
    JOURNAL OF NONLINEAR SCIENCE, 1996, 6 (01) : 1 - 18
  • [12] Frame-invariance in finite element formulations of geometrically exact rods
    Zhong, Peinan
    Huang, Guojun
    Yang, Guowei
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2016, 37 (12) : 1669 - 1688
  • [13] Multi-body dynamics simulation of geometrically exact Cosserat rods
    Lang, Holger
    Linn, Joachim
    Arnold, Martin
    MULTIBODY SYSTEM DYNAMICS, 2011, 25 (03) : 285 - 312
  • [14] Frame-invariance in finite element formulations of geometrically exact rods
    Peinan Zhong
    Guojun Huang
    Guowei Yang
    Applied Mathematics and Mechanics, 2016, 37 : 1669 - 1688
  • [15] Multi-body dynamics simulation of geometrically exact Cosserat rods
    Holger Lang
    Joachim Linn
    Martin Arnold
    Multibody System Dynamics, 2011, 25 : 285 - 312
  • [16] ON THE DYNAMICS IN SPACE OF RODS UNDERGOING LARGE MOTIONS - A GEOMETRICALLY EXACT APPROACH
    SIMO, JC
    VUQUOC, L
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 66 (02) : 125 - 161
  • [17] Geometrically exact static isogeometric analysis of arbitrarily curved plane Bernoulli-Euler beam
    Borkovic, A.
    Marussig, B.
    Radenkovic, G.
    THIN-WALLED STRUCTURES, 2022, 170
  • [18] Frame-invariance in finite element formulations of geometrically exact rods
    Peinan ZHONG
    Guojun HUANG
    Guowei YANG
    Applied Mathematics and Mechanics(English Edition), 2016, 37 (12) : 1669 - 1688
  • [19] Geometrically exact static isogeometric analysis of an arbitrarily curved spatial Bernoulli-Euler beam
    Borkovic, A.
    Marussig, B.
    Radenkovic, G.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 390
  • [20] GEOMETRICALLY NONLINEAR THEORY OF NATURALLY CURVED AND TWISTED RODS WITH FINITE ROTATIONS.
    Iura, Masashi
    Hirashima, Masaharu
    Doboku Gakkai Rombun-Hokokushu/Proceedings of the Japan Society of Civil Engineers, 1985, (362 /I-4): : 107 - 117