Three dimensional thermal-, electrical-, and electrochemical-coupled model for cylindrical wound large format lithium-ion batteries

被引:154
|
作者
Lee, Kyu-Jin [1 ,2 ]
Smith, Kandler [1 ]
Pesaran, Ahmad [1 ]
Kim, Gi-Heon [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO USA
[2] Myongji Univ, Dept Mech Engn, Yongin, Gyeonggi Do, South Korea
关键词
Lithium-ion battery; Wound cylindrical cell; Multiscale model; Orthotropic continuum; Wound potential-pair continuum model; POSITIVE ELECTRODES; DESIGN;
D O I
10.1016/j.jpowsour.2013.03.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A numerical model for cylindrical wound lithium-ion cells, which resolves thermal, electrical and electrochemical coupled physics, is presented in this paper. Using the Multi-Scale Multi-Domain (MSMD) model framework, the wound potential-pair continuum (WPPC) model is developed as a cell domain submodel to solve heat and electron transfer across the length scale of cell dimension. By defining the cell composite as a wound continuum, the WPPC model can evaluate layer-to-layer differences in electrical potential along current collectors, and electric current in the winding direction to investigate the effects of thermal and electrical configurations of a cell design, such as number and location of tabs, on performance and life of a cylindrical cell. In this study, 20-Ah large-format cylindrical cell simulations are conducted using the WPPC model with the number of electrical tabs as a control parameter to investigate how macroscopic design for electrical current transport affects microscopic electrochemical processes and apparent electrical and thermal output. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:20 / 32
页数:13
相关论文
共 50 条
  • [31] Research on Temperature Inconsistency of Large-Format Lithium-Ion Batteries Based on the Electrothermal Model
    Yu, Chao
    Zhu, Jiangong
    Wei, Xuezhe
    Dai, Haifeng
    [J]. WORLD ELECTRIC VEHICLE JOURNAL, 2023, 14 (10):
  • [32] Study on electrochemical and thermal characteristics of lithium-ion battery using the electrochemical-thermal coupled model
    Wang, Limei
    Niu, Junyan
    Zhao, Wen
    Li, Guochun
    Zhao, Xiuliang
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (06) : 2086 - 2107
  • [33] Investigation on lithium-ion battery electrochemical and thermal characteristic based on electrochemical-thermal coupled model
    An, Zhoujian
    Jia, Li
    Wei, Liting
    Dang, Chao
    Peng, Qi
    [J]. APPLIED THERMAL ENGINEERING, 2018, 137 : 792 - 807
  • [34] A three-dimensional thermal abuse model for lithium-ion cells
    Kim, Gi-Heon
    Pesaran, Ahmad
    Spotnitz, Robert
    [J]. JOURNAL OF POWER SOURCES, 2007, 170 (02) : 476 - 489
  • [35] Evaluating the thermal failure risk of large-format lithium-ion batteries using a cone calorimeter
    Wang, Zhi
    Ning, Xiaoyao
    Zhu, Kang
    Hu, Jianyao
    Yang, Han
    Wang, Jian
    [J]. JOURNAL OF FIRE SCIENCES, 2019, 37 (01) : 81 - 95
  • [36] An Electrochemical-thermal Coupled Gas Generation and Overcharge-to-thermal-runaway Model for Large-format Lithium Ion Battery
    Xu, Jiajun
    Hendricks, Christopher
    [J]. PROCEEDINGS OF THE NINETEENTH INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM 2020), 2020, : 597 - 603
  • [37] Effects and mechanism of thermal insulation materials on thermal runaway propagation in large-format pouch lithium-ion batteries
    Zou, Kaiyu
    Xu, Jie
    Zhao, Mengke
    Lu, Shouxiang
    [J]. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 185 : 1352 - 1361
  • [38] Trifunctional composite thermal barrier mitigates the thermal runaway propagation of large-format prismatic lithium-ion batteries
    Li, Ruirui
    Liu, Zhihao
    Zheng, Siqi
    Xu, Chengshan
    Sun, Jieyu
    Chen, Siqi
    Wang, Huaibin
    Lu, Languang
    Deng, Tao
    Feng, Xuning
    [J]. JOURNAL OF ENERGY STORAGE, 2023, 73
  • [39] An electrochemical-thermal-aging effects coupled model for lithium-ion batteries performance simulation and state of health estimation
    Chen, Shiqin
    Zhang, Qi
    Wang, Facheng
    Wang, Dafang
    He, Ziqi
    [J]. APPLIED THERMAL ENGINEERING, 2024, 239
  • [40] An Efficient Electrochemical-Thermal Tanks-in-Series Model for Lithium-Ion Batteries
    Subramaniam, Akshay
    Kolluri, Suryanarayana
    Santhanagopalan, Shriram
    Subramanian, Venkat R.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (11)