Trifunctional composite thermal barrier mitigates the thermal runaway propagation of large-format prismatic lithium-ion batteries

被引:3
|
作者
Li, Ruirui [1 ]
Liu, Zhihao [1 ]
Zheng, Siqi [4 ]
Xu, Chengshan [5 ]
Sun, Jieyu [6 ]
Chen, Siqi [7 ]
Wang, Huaibin [8 ]
Lu, Languang [5 ]
Deng, Tao [1 ,2 ,3 ,9 ]
Feng, Xuning [5 ]
机构
[1] Chongqing Jiaotong Univ, Sch Aeronaut, Chongqing 400074, Peoples R China
[2] Chongqing Key Lab Green Aviat Energy & Power, Chongqing 401120, Peoples R China
[3] Chongqing Jiaotong Univ, Green Aerotech Res Inst, Chongqing 401120, Peoples R China
[4] Qingenergy Kunshan Technol Co Ltd, Suzhou 215300, Peoples R China
[5] Tsinghua Univ, State Key Lab Intelligent Green Vehicle & Mobil, Beijing 100084, Peoples R China
[6] Univ Shanghai Sci & Technol, Coll Mech Engn, Shanghai 200093, Peoples R China
[7] Tongji Univ, Sch Automot Studies, Shanghai 201804, Peoples R China
[8] China Peoples Police Univ, Langfang 065000, Peoples R China
[9] Chongqing Jiaotong Univ, Sch Aeronaut, 66 Xuefu Rd, Chongqing 400074, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal runaway; Lithium ion battery; Battery safety; Thermal runaway propagation inhibition; Thermal barrier; COOLING STRATEGIES; PREVENTION; MANAGEMENT; MECHANISMS; SYSTEM; MODULE; PACK;
D O I
10.1016/j.est.2023.109178
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the increasing energy density and capacity of lithium ion batteries (LIB), the safety problems caused by thermal runaway propagation (TRP) has become the most predominant hazard for electric vehicles (EVs) and energy storage systems (ESSs). Mitigating the TRP is significant for large-format LIB application. This study proposed a novel thermal barrier with nano-ceramic fiber, phase change materials (PCM) and mica cross skeleton. A 3 mm thermal barrier can effectively prevent the TRP behavior of a 153 Ah Li(Ni0.5Co0.2Mn0.3) (NCM523) battery module. The enthalpy of heat absorption of PCM is 1958 J/g. Besides, the mica skeleton can resist the extrusion pressure from the batteries, and the remaining nano-ceramic fiber provides insulation capacity. Moreover, the thermal barrier still maintains desirable heat insulation under pressure and high temperature operations, exhibiting high compressive strength. Furthermore, the thermal barrier can reduce the maximum temperature of the battery by about 10 degrees C during 2C charging and discharging conditions. This study guides the safety design of thermal barrier for large capacity LIB systems, contributing to the potential safety protection of next-generation EVs and ESSs.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Multiphysics Simulation of the Thermal Runaway in Large-Format Lithium-ion Batteries
    Xu, Jiajun
    Hendricks, Christopher
    [J]. PROCEEDINGS OF THE 2019 EIGHTEENTH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM 2019), 2019, : 815 - 821
  • [2] Experimental study on thermal runaway and its propagation of large format prismatic lithium-ion batteries
    Wang, Boxuan
    Zhou, Zhizuan
    Li, Lun
    Peng, Yang
    Cao, Junda
    Yang, Lizhong
    Cao, Bei
    [J]. JOURNAL OF ENERGY STORAGE, 2022, 55
  • [3] Experimentally exploring prevention of thermal runaway propagation of large-format prismatic lithium-ion battery module
    Zhou, Zhizuan
    Zhou, Xiaodong
    Li, Maoyu
    Cao, Bei
    Liew, K. M.
    Yang, Lizhong
    [J]. APPLIED ENERGY, 2022, 327
  • [4] Effects and mechanism of thermal insulation materials on thermal runaway propagation in large-format pouch lithium-ion batteries
    Zou, Kaiyu
    Xu, Jie
    Zhao, Mengke
    Lu, Shouxiang
    [J]. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 185 : 1352 - 1361
  • [5] Thermal Management of Large-Format Prismatic Lithium-Ion Battery in PHEV Application
    Lundgren, Henrik
    Svens, Pontus
    Ekstrom, Henrik
    Tengstedt, Carl
    Lindstrom, Johan
    Behm, Marten
    Lindbergh, Goran
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (02) : A309 - A317
  • [6] MODELING THERMAL RUNAWAY IN PRISMATIC LITHIUM-ION BATTERIES
    Khan, Shehzad
    Anwar, Sohail
    Casa, Jairo
    Hasnain, Muhammad
    Ahmed, Hossain
    Sezer, Hayri
    [J]. PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 10, 2023,
  • [7] Thermal runaway behavior during overcharge for large-format Lithium-ion batteries with different packaging patterns
    Huang, Lvwei
    Zhang, Zhaosheng
    Wang, Zhenpo
    Zhang, Lei
    Zhu, Xiaoqing
    Dorrell, David D.
    [J]. JOURNAL OF ENERGY STORAGE, 2019, 25
  • [8] Characterization of commercial thermal barrier materials to prevent thermal runaway propagation in large format lithium-ion cells
    Nambisan, Praveen
    Manjunatha, H.
    Ravadi, Pavan
    Reddy, Hari Prasad
    Bharath, G. M.
    Kulkarni, Mukund Arvind
    Sundaram, Saravanan
    [J]. JOURNAL OF ENERGY STORAGE, 2023, 74
  • [9] Simultaneous estimation of thermal parameters for large-format laminated lithium-ion batteries
    Zhang, Jianbo
    Wu, Bin
    Li, Zhe
    Huang, Jun
    [J]. JOURNAL OF POWER SOURCES, 2014, 259 : 106 - 116
  • [10] Comparative study on the influence of incident heat flux on thermal runaway fire development of large-format lithium-ion batteries
    Zou, Kaiyu
    Lu, Shouxiang
    [J]. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 176 : 831 - 840