Testing hydrologic time series for stationarity

被引:50
|
作者
Chen, HL [1 ]
Rao, AR
机构
[1] Lan Yang Inst Technol, Dept Environm Engn, Toucheng 26141, Ilan, Taiwan
[2] Purdue Univ, Sch Civil Engn, W Lafayette, IN 47907 USA
关键词
algorithms; time-series analysis; droughts; stationary processes; hydrology;
D O I
10.1061/(ASCE)1084-0699(2002)7:2(129)
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The main objective of this study is to examine if hydrologic monthly series are stationary. A segmentation algorithm is applied so that nonstationary series are identified and partitioned into stationary segments. Four sets of hydrologic data are analyzed, including monthly streamflow, temperature, precipitation, and Palmer's drought severity index series. The first-order differenced standardized monthly series are also analyzed, in addition to the standardized monthly series. The results indicate that more series of monthly streamflow and Palmer's drought severity index are identified as nonstationary than stationary, while more series of monthly temperature and precipitation are stationary. The change points are commonly observed during two periods, one between 1960 and 1970, and the other between 1930 and 1940. In general, standardized hydrologic monthly series, either differenced or not, are nonstationary.
引用
收藏
页码:129 / 136
页数:8
相关论文
共 50 条
  • [31] INTEGRATION VERSUS TREND STATIONARITY IN TIME-SERIES
    DEJONG, DN
    NANKERVIS, JC
    SAVIN, NE
    WHITEMAN, CH
    [J]. ECONOMETRICA, 1992, 60 (02) : 423 - 433
  • [32] A Study of Stationarity in Time Series by Using Wavelet Transform
    Dghais, Amel Abdoullah Ahmed
    Ismail, Mohd Tahir
    [J]. PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 798 - 804
  • [33] A test for second order stationarity of a multivariate time series
    Jentsch, Carsten
    Rao, Suhasini Subba
    [J]. JOURNAL OF ECONOMETRICS, 2015, 185 (01) : 124 - 161
  • [34] Measuring the degree of non-stationarity of a time series
    Das, Sourav
    Nason, Guy P.
    [J]. STAT, 2016, 5 (01): : 295 - 305
  • [35] ON THE STATIONARITY AND INVERTIBILITY OF A GENERAL BILINEAR TIME SERIES MODEL
    贾民平
    黄仁
    [J]. 高校应用数学学报A辑, 1992, (03) : 381 - 390
  • [36] Stationarity in Partial Discharge Time Series of Electrical Trees
    Donoso, Pablo
    Schurch, Roger
    Ardila-Rey, Jorge
    Montana, Johny
    [J]. 2022 IEEE CONFERENCE ON ELECTRICAL INSULATION AND DIELECTRIC PHENOMENA (IEEE CEIDP 2022), 2022, : 360 - 363
  • [37] A TEST FOR NON-STATIONARITY OF TIME-SERIES
    PRIESTLE.MB
    RAO, TS
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1969, 31 (01) : 140 - &
  • [38] Investigation of Stationarity for Graph Time Series Data Sets
    Guneyi, Eylem Tugce
    Vural, Elif
    [J]. 2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [39] Testing Stationarity With Surrogates: A Time-Frequency Approach
    Borgnat, Pierre
    Flandrin, Patrick
    Honeine, Paul
    Richard, Cedric
    Xiao, Jun
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (07) : 3459 - 3470
  • [40] Measuring nonlinear dependence in hydrologic time series
    H. S. Kim
    K. H. Lee
    M. S. Kyoung
    B. Sivakumar
    E. T. Lee
    [J]. Stochastic Environmental Research and Risk Assessment, 2009, 23 : 907 - 916