Predicting Infectious Diseases by Using Machine Learning Classifiers

被引:2
|
作者
Gomez-Pulido, Juan A. [1 ]
Romero-Muelas, Jose M. [1 ]
Gomez-Pulido, Jose M. [2 ]
Castillo Sequera, Jose L. [2 ]
Sanz Moreno, Jose [3 ]
Polo-Luque, Maria-Luz [4 ]
Garces-Jimenez, Alberto [5 ]
机构
[1] Univ Extremadura, Dept Technol Comp & Commun, Caceres, Spain
[2] Univ Alcala, Dept Comp Sci, Alcala De Henares, Spain
[3] Univ Hosp Principe Asturias, Infect Dis Unit, Alcala De Henares, Spain
[4] Univ Alcala, Dept Nursering, Alcala De Henares, Spain
[5] Univ Francisco Vitoria, Ctr Res & Innovat Knowledge Management, Madrid, Spain
关键词
Infectious diseases; Machine learning classification;
D O I
10.1007/978-3-030-45385-5_53
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The change and evolution of certain health variables can be an evidence that makes easier the diagnosis of infectious diseases. In this kind of diseases, it is important to monitor some patients' variables along a particular period. It is possible to build a prediction model from registers previously stored with this information. This model can give the probability to develop the disease from input data. Machine learning algorithms can generate these prediction models, which can classify samples composed of clinical parameters in order to predict if an infectious disease will be developed. The prediction models are trained from the patients' registers previously collected and stored along the time. This work shows an experience of applying machine learning techniques for classifying samples of different infectious diseases. Besides, we have studied the influence on the classification of the different clinical parameters, which could be very useful for the medical staff in order to monitor carefully certain parameters.
引用
收藏
页码:590 / 599
页数:10
相关论文
共 50 条
  • [1] Predicting Autism Spectrum Disorder Using Machine Learning Classifiers
    Chowdhury, Koushik
    Iraj, Mir Ahmad
    [J]. 2020 5TH IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS ON ELECTRONICS, INFORMATION, COMMUNICATION & TECHNOLOGY (RTEICT-2020), 2020, : 324 - 327
  • [2] Predicting Radiological Panel Opinions Using a Panel of Machine Learning Classifiers
    Zinovev, Dmitriy
    Raicu, Daniela
    Furst, Jacob
    Armato, Samuel G., III
    [J]. ALGORITHMS, 2009, 2 (04) : 1473 - 1502
  • [3] Effectively Predicting the Presence of Coronary Heart Disease Using Machine Learning Classifiers
    ul Hassan, Ch Anwar
    Iqbal, Jawaid
    Irfan, Rizwana
    Hussain, Saddam
    Algarni, Abeer D.
    Bukhari, Syed Sabir Hussain
    Alturki, Nazik
    Ullah, Syed Sajid
    [J]. SENSORS, 2022, 22 (19)
  • [4] Predicting the Appearance of Hypotension during Hemodialysis Sessions Using Machine Learning Classifiers
    Gomez-Pulido, Juan A.
    Gomez-Pulido, Jose M.
    Rodriguez-Puyol, Diego
    Polo-Luque, Maria-Luz
    Vargas-Lombardo, Miguel
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (05) : 1 - 17
  • [5] Machine Learning Tree Classifiers in Predicting Diabetes Mellitus
    Vigneswari, D.
    Kumar, N. Komal
    Raj, V. Ganesh
    Gugan, A.
    Vikash, S. R.
    [J]. 2019 5TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING & COMMUNICATION SYSTEMS (ICACCS), 2019, : 84 - 87
  • [6] Evaluation of Machine Learning Classifiers for Predicting Deep Convection
    Ukkonen, Peter
    Makela, Antti
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2019, 11 (06) : 1784 - 1802
  • [7] Assessment of Machine Learning Classifiers for Heart Diseases Discovery
    Ogundokun, Roseline Oluwaseun
    Misra, Sanjay
    Sadiku, Peter Ogirima
    Adeniyi, Jide Kehinde
    [J]. INFORMATION SYSTEMS (EMCIS 2021), 2022, 437 : 441 - 452
  • [8] Investigations on cardiovascular diseases and predicting using machine learning algorithms
    Ram Kumar, R. P.
    Polepaka, Sanjeeva
    Manasa, Vanam
    Palakurthy, Deepthi
    Annapoorna, Errabelli
    Dhaliwal, Navdeep
    Dhall, Himanshu
    Alzubaidi, Laith H.
    [J]. COGENT ENGINEERING, 2024, 11 (01):
  • [9] Predicting Hydrological Drought Alert Levels Using Supervised Machine-Learning Classifiers
    Jehanzaib, Muhammad
    Shah, Sabab Ali
    Son, Ho Jun
    Jang, Sung-Hwan
    Kim, Tae-Woong
    [J]. KSCE JOURNAL OF CIVIL ENGINEERING, 2022, 26 (06) : 3019 - 3030
  • [10] Predicting Hydrological Drought Alert Levels Using Supervised Machine-Learning Classifiers
    Muhammad Jehanzaib
    Sabab Ali Shah
    Ho Jun Son
    Sung-Hwan Jang
    Tae-Woong Kim
    [J]. KSCE Journal of Civil Engineering, 2022, 26 : 3019 - 3030