Machine Learning Tree Classifiers in Predicting Diabetes Mellitus

被引:0
|
作者
Vigneswari, D. [1 ]
Kumar, N. Komal [2 ]
Raj, V. Ganesh [2 ]
Gugan, A. [2 ]
Vikash, S. R. [2 ]
机构
[1] Vel Tech Multi Tech Dr Rangarajan Dr Sakunthala E, Dept Informat Technol, Chennai, Tamil Nadu, India
[2] Vel Tech High Tech Dr Rangarajan Dr Sakunthala En, Dept Informat Technol, Chennai, Tamil Nadu, India
关键词
Diabetes Mellitus; LMT; Random Forest; C4.5; accuracy; DIAGNOSIS; CLASSIFICATION;
D O I
10.1109/icaccs.2019.8728388
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Diabetes Mellitus (DM) is the group of diseases where the patient suffers from higher levels of sugar in blood over a prolonged time Machine learning classifier helps to predict the disease based on the condition of the symptom suffered by the patient The aim of this paper is to compare the performance of the machine learning tree classifiers in predicting Diabetes Mellitus (DM). Machine learning tree classifiers such as Random Forest, C4.5, Random Tree, REPTree, and Logistic Model Tree (LMT) were analyzed based on their accuracy and True Positive Rate (TPR). In this analysis of predicting diabetes mellitus Logistic Model Tree (LMT) machine learning tree classifier achieved higher accuracy of 79.31%, True Positive Rate (TPR) of 0.739 and an execution time of 1.09 sec than other classifiers under study.
引用
收藏
页码:84 / 87
页数:4
相关论文
共 50 条
  • [1] Predicting Diabetes Mellitus With Machine Learning Techniques
    Zou, Quan
    Qu, Kaiyang
    Luo, Yamei
    Yin, Dehui
    Ju, Ying
    Tang, Hua
    [J]. FRONTIERS IN GENETICS, 2018, 9
  • [2] Wellness Prediction in Diabetes Mellitus Risks Via Machine Learning Classifiers
    Saravanakumar, Venkatesh M.
    Sabibullah, M.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (04): : 203 - 208
  • [3] Predicting the Risk of Diabetes and Heart Disease with Machine Learning Classifiers: The Mediation Analysis
    Verma, Ajay
    Jain, Manisha
    [J]. MEASUREMENT-INTERDISCIPLINARY RESEARCH AND PERSPECTIVES, 2024,
  • [4] Diabetes Mellitus Disease Prediction Using Machine Learning Classifiers with Oversampling and Feature Augmentation
    Ahamed, B. Shamreen
    Arya, Meenakshi S.
    Nancy, Auxilia Osvin V.
    [J]. ADVANCES IN HUMAN-COMPUTER INTERACTION, 2022, 2022
  • [5] Predicting Diabetes Mellitus Using Machine Learning and Optical Character Recognition
    Silva, W. A. J. R.
    Shirantha, H. M. K.
    Balalla, L. J. M. V. N.
    Ranasinghe, R. A. D. V. K.
    Kuruwitaarachchi, N.
    Kasthurirathna, D.
    [J]. 2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,
  • [6] Predicting complications of diabetes mellitus using advanced machine learning algorithms
    Ljubic, Branimir
    Hai, Ameen Abdel
    Stanojevic, Marija
    Diaz, Wilson
    Polimac, Daniel
    Pavlovski, Martin
    Obradovic, Zoran
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2020, 27 (09) : 1343 - 1351
  • [7] Performance Assessment of Different Machine Learning Algorithms in Predicting Diabetes Mellitus
    Nishat, Mirza Muntasir
    Faisal, Fahim
    Mahbub, Md Ashif
    Mahbub, Md Hasib
    Islam, Shuvo
    [J]. BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2021, 14 (01): : 74 - 82
  • [8] Prediction of Type-2 Diabetes Mellitus Disease Using Machine Learning Classifiers and Techniques
    Ahamed, B. Shamreen
    Arya, Meenakshi Sumeet
    Nancy, V. Auxilia Osvin
    [J]. FRONTIERS IN COMPUTER SCIENCE, 2022, 4
  • [9] A Bayesian Machine Learning Model for Predicting Uncontrolled Type 2 Diabetes Mellitus
    Rios-Barba, Joana Itzel
    Robles-Cabrera, Adriana
    Calero-Ramos, Romel
    Monserrat Rios-Vazquez, Areli
    Stephens, Christopher R.
    [J]. INFORMATION MANAGEMENT AND BIG DATA, SIMBIG 2023, 2024, 2142 : 238 - 248
  • [10] Application of machine learning algorithm for predicting gestational diabetes mellitus in early pregnancy
    Li-Li Wei
    Yue-Shuai Pan
    Yan Zhang
    Kai Chen
    Hao-Yu Wang
    Jing-Yuan Wang
    [J]. Frontiers of Nursing, 2021, 8 (03) : 209 - 221