Predicting Infectious Diseases by Using Machine Learning Classifiers

被引:2
|
作者
Gomez-Pulido, Juan A. [1 ]
Romero-Muelas, Jose M. [1 ]
Gomez-Pulido, Jose M. [2 ]
Castillo Sequera, Jose L. [2 ]
Sanz Moreno, Jose [3 ]
Polo-Luque, Maria-Luz [4 ]
Garces-Jimenez, Alberto [5 ]
机构
[1] Univ Extremadura, Dept Technol Comp & Commun, Caceres, Spain
[2] Univ Alcala, Dept Comp Sci, Alcala De Henares, Spain
[3] Univ Hosp Principe Asturias, Infect Dis Unit, Alcala De Henares, Spain
[4] Univ Alcala, Dept Nursering, Alcala De Henares, Spain
[5] Univ Francisco Vitoria, Ctr Res & Innovat Knowledge Management, Madrid, Spain
关键词
Infectious diseases; Machine learning classification;
D O I
10.1007/978-3-030-45385-5_53
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The change and evolution of certain health variables can be an evidence that makes easier the diagnosis of infectious diseases. In this kind of diseases, it is important to monitor some patients' variables along a particular period. It is possible to build a prediction model from registers previously stored with this information. This model can give the probability to develop the disease from input data. Machine learning algorithms can generate these prediction models, which can classify samples composed of clinical parameters in order to predict if an infectious disease will be developed. The prediction models are trained from the patients' registers previously collected and stored along the time. This work shows an experience of applying machine learning techniques for classifying samples of different infectious diseases. Besides, we have studied the influence on the classification of the different clinical parameters, which could be very useful for the medical staff in order to monitor carefully certain parameters.
引用
收藏
页码:590 / 599
页数:10
相关论文
共 50 条
  • [41] Predicting sun protection measures against skin diseases using machine learning approaches
    Sultana, Nahid
    [J]. JOURNAL OF COSMETIC DERMATOLOGY, 2022, 21 (02) : 758 - 769
  • [42] Towards comparing and using Machine Learning techniques for detecting and predicting Heart Attack and Diseases
    Obasi, Thankgod
    Shafiq, M. Omair
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 2393 - 2402
  • [43] Predicting subcellular localization of proteins using machine-learned classifiers
    Lu, Z
    Szafron, D
    Greiner, R
    Lu, P
    Wishart, DS
    Poulin, B
    Anvik, J
    Macdonell, C
    Eisner, R
    [J]. BIOINFORMATICS, 2004, 20 (04) : 547 - 556
  • [44] An unsupervised machine learning model for discovering latent infectious diseases using social media data
    Lim, Sunghoon
    Tucker, Conrad S.
    Kumara, Soundar
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2017, 66 : 82 - 94
  • [45] Machine learning surveillance of foodborne infectious diseases using wastewater microbiome, crowdsourced, and environmental data
    Oh, Seungdae
    Byeon, Haeil
    Wijaya, Jonathan
    [J]. WATER RESEARCH, 2024, 265
  • [46] Domain-Scan: Combinatorial Sero-Diagnosis of Infectious Diseases Using Machine Learning
    Hada-Neeman, Smadar
    Weiss-Ottolenghi, Yael
    Wagner, Naama
    Avram, Oren
    Ashkenazy, Haim
    Maor, Yaakov
    Sklan, Ella H.
    Shcherbakov, Dmitry
    Pupko, Tal
    Gershoni, Jonathan M.
    [J]. FRONTIERS IN IMMUNOLOGY, 2021, 11
  • [47] Printed Machine Learning Classifiers
    Mubarik, Muhammad Husnain
    Weller, Dennis D.
    Bleier, Nathaniel
    Tomei, Matthew
    Aghassi-Hagmann, Jasmin
    Tahoori, Mehdi B.
    Kumar, Rakesh
    [J]. 2020 53RD ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO 2020), 2020, : 73 - 87
  • [48] Copying Machine Learning Classifiers
    Unceta, Irene
    Nin, Jordi
    Pujol, Oriol
    [J]. IEEE ACCESS, 2020, 8 (08) : 160268 - 160284
  • [49] Machine learning classifiers in glaucoma
    Bowd, Christopher
    Goldbaum, Michael H.
    [J]. OPTOMETRY AND VISION SCIENCE, 2008, 85 (06) : 396 - 405
  • [50] Predicting lung adenocarcinoma disease progression using methylation-correlated blocks and ensemble machine learning classifiers
    Yu, Xin
    Yang, Qian
    Wang, Dong
    Li, Zhaoyang
    Chen, Nianhang
    Kong, De-Xin
    [J]. PEERJ, 2021, 9