Tests for regression coefficients in high dimensional partially linear models

被引:6
|
作者
Liu, Yan [1 ,2 ]
Zhang, Sanguo [1 ,2 ]
Ma, Shuangge [3 ]
Zhang, Qingzhao [4 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China
[2] Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing, Peoples R China
[3] Yale Univ, Dept Biostat, New Haven, CT 06520 USA
[4] Xiamen Univ, Sch Econ, Wang Yanan Inst Studies Econ, MOE Key Lab Econ & Fujian Key Lab Stat, Xiamen, Fujian, Peoples R China
基金
美国国家卫生研究院; 中国国家自然科学基金; 北京市自然科学基金;
关键词
High-dimensional analysis; Partially linear models; Regression coefficients; U-statistics; EMPIRICAL LIKELIHOOD TEST; RATES;
D O I
10.1016/j.spl.2020.108772
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a U-statistics test for regression coefficients in high dimensional partially linear models. In addition, the proposed method is extended to test part of the coefficients. Asymptotic distributions of the test statistics are established. Simulation studies demonstrate satisfactory finite-sample performance. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Mixing partially linear regression models
    Liu S.
    Yang Y.
    [J]. Sankhya A, 2013, 75 (1): : 74 - 95
  • [32] Distributed Partially Linear Additive Models With a High Dimensional Linear Part
    Wang, Yue
    Zhang, Weiping
    Lian, Heng
    [J]. IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2021, 7 : 611 - 625
  • [33] Variable clustering in high dimensional linear regression models
    Yengo, Loic
    Jacques, Julien
    Biernacki, Christophe
    [J]. JOURNAL OF THE SFDS, 2014, 155 (02): : 38 - 56
  • [34] Tests for Coefficients in High-dimensional Additive Hazard Models
    Zhong, Ping-Shou
    Hu, Tao
    Li, Jun
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2015, 42 (03) : 649 - 664
  • [35] Partially Linear Additive Hazards Regression With Varying Coefficients
    Yin, Guosheng
    Li, Hui
    Zeng, Donglin
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (483) : 1200 - 1213
  • [36] Smoothed quantile regression for partially functional linear models in high dimensions
    Wang, Zhihao
    Bai, Yongxin
    Haerdle, Wolfgang K.
    Tian, Maozai
    [J]. BIOMETRICAL JOURNAL, 2023, 65 (07)
  • [37] SCAD-penalized regression in additive partially linear proportional hazards models with an ultra-high-dimensional linear part
    Lian, Heng
    Li, Jianbo
    Tang, Xingyu
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 125 : 50 - 64
  • [38] An RKHS-based approach to double-penalized regression in high-dimensional partially linear models
    Cui, Wenquan
    Cheng, Haoyang
    Sun, Jiajing
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 168 : 201 - 210
  • [39] Profile forward regression screening for ultra-high dimensional semiparametric varying coefficient partially linear models
    Li, Yujie
    Li, Gaorong
    Lian, Heng
    Tong, Tiejun
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 155 : 133 - 150
  • [40] Rank-based score tests for high-dimensional regression coefficients
    Feng, Long
    Zou, Changliang
    Wang, Zhaojun
    Chen, Bin
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 2131 - 2149