Distributed Partially Linear Additive Models With a High Dimensional Linear Part
被引:4
|
作者:
Wang, Yue
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R ChinaCity Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
Wang, Yue
[1
]
Zhang, Weiping
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China, Sch Management, Dept Stat & Finance, Hefei 230052, Anhui, Peoples R ChinaCity Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
Zhang, Weiping
[2
]
Lian, Heng
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R ChinaCity Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
Lian, Heng
[1
]
机构:
[1] City Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
[2] Univ Sci & Technol China, Sch Management, Dept Stat & Finance, Hefei 230052, Anhui, Peoples R China
We study how the divide and conquer principle works in high-dimensional partially linear additive models when the dimension of the linear part is large compared to the sample size. We find that a two-stage approach works well in this setting. Using the lasso penalty, first a debiased profiled estimator for the linear part is averaged to obtain an estimator that has the optimal rate, which is further thresholded to recover sparsity after averaging. In the second stage, estimates of the nonparametric functions are obtained and averaged after plugging in the linear part estimate. Undermild assumptions, the nonparametric part achieved the oracle property in the sense that each, possibly of different smoothness, has the same asymptotic distribution as when the other component functions, as well as the linear coefficients, are known.
机构:
Nanjing Audit Univ, Sch Stat & Data Sci, Nanjing 211815, Peoples R ChinaNanjing Audit Univ, Sch Stat & Data Sci, Nanjing 211815, Peoples R China
Zhao, Yan-Yong
Zhang, Yuchun
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Audit Univ, Sch Stat & Data Sci, Nanjing 211815, Peoples R ChinaNanjing Audit Univ, Sch Stat & Data Sci, Nanjing 211815, Peoples R China
Zhang, Yuchun
Liu, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kebangsaan Malaysia, Fac Sci & Technol, Dept Math Sci, Bangi 43600, Selangor, MalaysiaNanjing Audit Univ, Sch Stat & Data Sci, Nanjing 211815, Peoples R China
Liu, Yuan
Ismail, Noriszura
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kebangsaan Malaysia, Fac Sci & Technol, Dept Math Sci, Bangi 43600, Selangor, MalaysiaNanjing Audit Univ, Sch Stat & Data Sci, Nanjing 211815, Peoples R China
机构:
Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USAPurdue Univ, Dept Stat, W Lafayette, IN 47907 USA
Zhu, Ying
Yu, Zhuqing
论文数: 0引用数: 0
h-index: 0
机构:
AbbVie Inc, N Chicago, IL USAPurdue Univ, Dept Stat, W Lafayette, IN 47907 USA
Yu, Zhuqing
Cheng, Guang
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Dept Stat, W Lafayette, IN 47907 USAPurdue Univ, Dept Stat, W Lafayette, IN 47907 USA
Cheng, Guang
[J].
22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89,
2019,
89
机构:
Cornell Univ, Dept Comp Sci, Ithaca, NY 14850 USACornell Univ, Dept Comp Sci, Ithaca, NY 14850 USA
Lou, Yin
Bien, Jacob
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Dept Biol Stat & Computat Biol, Ithaca, NY 14850 USA
Cornell Univ, Dept Stat Sci, Ithaca, NY 14850 USACornell Univ, Dept Comp Sci, Ithaca, NY 14850 USA
Bien, Jacob
Caruana, Rich
论文数: 0引用数: 0
h-index: 0
机构:
Microsoft Corp, Microsoft Res, Redmond, WA 98052 USACornell Univ, Dept Comp Sci, Ithaca, NY 14850 USA
Caruana, Rich
Gehrke, Johannes
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Dept Comp Sci, Ithaca, NY 14850 USACornell Univ, Dept Comp Sci, Ithaca, NY 14850 USA