Data-Driven Adaptive LQR for Completely Unknown LTI Systems

被引:10
|
作者
Jha, Sumit Kumar [1 ]
Roy, Sayan Basu [1 ]
Bhasin, Shubhendu [1 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Delhi, India
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
关键词
optimal control; adaptive optimal control; on-policy method; system identification; TIME LINEAR-SYSTEMS;
D O I
10.1016/j.ifacol.2017.08.804
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a data-driven on-policy optimal control design is proposed for continuous-time linear time invariant (LTI) systems with completely unknown dynamics. An online system identifier and control gain parameter estimator, which use past and current data together with standard gradient descent update laws, facilitate the design of an adaptive optimal controller that guarantees parameter convergence without the need of persistence of excitation (PE). Unlike the classical approach of enforcing the restrictive PE condition on the regressor, the data-driven approach is verifiable online and establishes parameter convergence from information rich past stored data simultaneously with the current data. A state feedback controller is designed using a dynamic gain parameter which is shown to converge to the neighborhood of the optimal LQR gain. Semi-global uniformly ultimately bounded (UUB) stability of the overall system is established using Lyapunov-based analysis. Simulation results further validate the developed result. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:4156 / 4161
页数:6
相关论文
共 50 条
  • [41] A data-driven fault isolation and estimation approach for unknown linear systems
    Ma, Zhen-Lei
    Li, Xiao-Jian
    [J]. JOURNAL OF PROCESS CONTROL, 2023, 124 : 118 - 128
  • [42] Data-driven Optimal Filtering for Linear Systems with Unknown Noise Covariances
    Talebi, Shahriar
    Taghvaei, Amirhossein
    Mesbahi, Mehran
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [43] Data-driven Control of Unknown Linear Systems via Quantized Feedback
    Zhao, Feiran
    Li, Xingchen
    You, Keyou
    [J]. LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 168, 2022, 168
  • [44] Data-Driven Abstraction and Model Invalidation for Unknown Systems With Bounded Jacobians
    Jin, Zeyuan
    Khajenejad, Mohammad
    Yong, Sze Zheng
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 3421 - 3426
  • [45] Data-Driven Stability Verification of Homogeneous Nonlinear Systems with Unknown Dynamics
    Lavaei, Abolfazl
    Esfahani, Peyman Mohajerin
    Zamani, Majid
    [J]. 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 7296 - 7301
  • [46] Online learning of data-driven controllers for unknown switched linear systems
    Rotulo, Monica
    De Persis, Claudio
    Tesi, Pietro
    [J]. AUTOMATICA, 2022, 145
  • [47] Data-Driven Sparse Event-Triggered Control of Unknown Systems
    Banno, Ikumi
    Azuma, Shun-ichi
    Ariizumi, Ryo
    Asai, Toru
    [J]. 2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 3392 - 3397
  • [48] Data-driven inference of unknown tilt and azimuth of distributed PV systems
    Meng, B.
    Loonen, R. C. G. M.
    Hensen, J. L. M.
    [J]. SOLAR ENERGY, 2020, 211 : 418 - 432
  • [49] Simulation of inventory systems with unknown input models: a data-driven approach
    Akcay, Alp
    Corlu, Canan G.
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2017, 55 (19) : 5826 - 5840
  • [50] Data-Driven Adaptive Dynamic Programming for Optimal Control of Continuous-Time Multicontroller Systems With Unknown Dynamics
    Zhao, Jingang
    [J]. IEEE ACCESS, 2022, 10 : 41503 - 41511