Data-Driven Adaptive LQR for Completely Unknown LTI Systems

被引:10
|
作者
Jha, Sumit Kumar [1 ]
Roy, Sayan Basu [1 ]
Bhasin, Shubhendu [1 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Delhi, India
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
关键词
optimal control; adaptive optimal control; on-policy method; system identification; TIME LINEAR-SYSTEMS;
D O I
10.1016/j.ifacol.2017.08.804
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a data-driven on-policy optimal control design is proposed for continuous-time linear time invariant (LTI) systems with completely unknown dynamics. An online system identifier and control gain parameter estimator, which use past and current data together with standard gradient descent update laws, facilitate the design of an adaptive optimal controller that guarantees parameter convergence without the need of persistence of excitation (PE). Unlike the classical approach of enforcing the restrictive PE condition on the regressor, the data-driven approach is verifiable online and establishes parameter convergence from information rich past stored data simultaneously with the current data. A state feedback controller is designed using a dynamic gain parameter which is shown to converge to the neighborhood of the optimal LQR gain. Semi-global uniformly ultimately bounded (UUB) stability of the overall system is established using Lyapunov-based analysis. Simulation results further validate the developed result. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:4156 / 4161
页数:6
相关论文
共 50 条
  • [21] Data-Driven Iterative Learning Control for I/O Constrained LTI Systems
    Zhang Ruikun
    Hou Zhongsheng
    Chi Ronghu
    Li Zhenxuan
    [J]. PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 3166 - 3171
  • [22] Data-Driven Adaptive Tracking Control of Unknown Autonomous Marine Vehicles
    Weng, Yongpeng
    Wang, Ning
    Qin, Hongde
    Karimi, Hamid Reza
    Qi, Wenhai
    [J]. IEEE ACCESS, 2018, 6 : 55723 - 55730
  • [23] Data-Driven Control of Unknown Systems: A Linear Programming Approach
    Tanzanakis, Alexandros
    Lygeros, John
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 7 - 13
  • [24] Data-Driven Optimal Structured Control for Unknown Symmetric Systems
    Massenio, Paolo R.
    Rizzello, Gianluca
    Naso, David
    Lewis, Frank L.
    Davoudi, Ali
    [J]. 2020 IEEE 16TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2020, : 179 - 184
  • [25] Data-driven distributionally robust LQR with multiplicative noise
    Coppens, Peter
    Schuurmans, Mathijs
    Patrinos, Panagiotis
    [J]. LEARNING FOR DYNAMICS AND CONTROL, VOL 120, 2020, 120 : 521 - 530
  • [26] Data-driven LQR for permanent magnet synchronous machines
    Suleimenov, Kanat
    Ton Duc Do
    [J]. 2019 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2019,
  • [27] On the Role of Regularization in Direct Data-Driven LQR Control
    Dörfler, Florian
    Tesi, Pietro
    De Persis, Claudio
    [J]. 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 1091 - 1098
  • [28] A data-driven adaptive controller for a class of unknown nonlinear discrete-time systems with estimated PPD
    Treesatayapun, Chidentree
    [J]. ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2015, 18 (02): : 218 - 228
  • [29] Data-Driven Iterative Adaptive Dynamic Programming Algorithm for Approximate Optimal Control of Unknown Nonlinear Systems
    Li, Hongliang
    Liu, Derong
    Wang, Ding
    Li, Chao
    [J]. PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 3265 - 3271
  • [30] Output feedback control for unknown LTI systems driven by unknown periodic disturbances
    Yilmaz, Cemal Tugrul
    Basturk, Halil Ibrahim
    [J]. AUTOMATICA, 2019, 99 : 112 - 119