Enhanced Accuracy for Multiclass Mental Workload Detection Using Long Short-Term Memory for Brain-Computer Interface

被引:55
|
作者
Asgher, Umer [1 ]
Khalil, Khurram [1 ]
Khan, Muhammad Jawad [1 ]
Ahmad, Riaz [1 ,2 ]
Butt, Shahid Ikramullah [1 ]
Ayaz, Yasar [1 ,3 ]
Naseer, Noman [4 ]
Nazir, Salman [5 ]
机构
[1] Natl Univ Sci & Technol NUST, Sch Mech & Mfg Engn SMME, Islamabad, Pakistan
[2] Natl Univ Sci & Technol NUST, Directorate Qual Assurance & Int Collaborat, Islamabad, Pakistan
[3] Natl Ctr Artificial Intelligence NCAI NUST, Islamabad, Pakistan
[4] Air Univ, Dept Mechatron Engn, Islamabad, Pakistan
[5] Univ South Eastern Norway, Dept Maritime Operat, Training & Assessment Res Grp, Kongsberg, Norway
基金
欧盟地平线“2020”;
关键词
convolutional neural network; long short-term memory; functional near-infrared spectroscopy; mental workload; brain-computer interface; deep neural networks; deep learning; NEAR-INFRARED SPECTROSCOPY; HEMODYNAMIC-RESPONSES; DROWSINESS DETECTION; MOTOR IMAGERY; CLASSIFICATION; EEG; FNIRS; PERFORMANCE; ALGORITHMS; SIGNALS;
D O I
10.3389/fnins.2020.00584
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Cognitive workload is one of the widely invoked human factors in the areas of human-machine interaction (HMI) and neuroergonomics. The precise assessment of cognitive and mental workload (MWL) is vital and requires accurate neuroimaging to monitor and evaluate the cognitive states of the brain. In this study, we have decoded four classes of MWL using long short-term memory (LSTM) with 89.31% average accuracy for brain-computer interface (BCI). The brain activity signals are acquired using functional near-infrared spectroscopy (fNIRS) from the prefrontal cortex (PFC) region of the brain. We performed a supervised MWL experimentation with four varying MWL levels on 15 participants (both male and female) and 10 trials of each MWL per participant. Real-time four-level MWL states are assessed using fNIRS system, and initial classification is performed using three strong machine learning (ML) techniques, support vector machine (SVM),k-nearest neighbor (k-NN), and artificial neural network (ANN) with obtained average accuracies of 54.33, 54.31, and 69.36%, respectively. In this study, novel deep learning (DL) frameworks are proposed, which utilizes convolutional neural network (CNN) and LSTM with 87.45 and 89.31% average accuracies, respectively, to solve high-dimensional four-level cognitive states classification problem. Statistical analysis,t-test, and one-wayF-test (ANOVA) are also performed on accuracies obtained through ML and DL algorithms. Results show that the proposed DL (LSTM and CNN) algorithms significantly improve classification performance as compared with ML (SVM, ANN, andk-NN) algorithms.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Sensory Audio Focusing Detection Using Brain-Computer Interface Archetype
    Villanueva, Ryan
    Hoang, Brandon
    Shah, Urmil
    Martinez, Yazmin
    George, Kiran
    2019 IEEE FIRST INTERNATIONAL CONFERENCE ON COGNITIVE MACHINE INTELLIGENCE (COGMI 2019), 2019, : 97 - 101
  • [42] MALICIOUS LOGIN DETECTION USING LONG SHORT-TERM MEMORY WITH AN ATTENTION MECHANISM
    Wu, Yanna
    Liu, Fucheng
    Wen, Yu
    ADVANCES IN DIGITAL FORENSICS XVII, 2021, 612 : 157 - 173
  • [43] Novelty Detection of a Rolling Bearing using Long Short-Term Memory Autoencoder
    Asavalertpalakom, Sunithi
    Singhatanadgid, Pairod
    Ardsomang, Tutpol
    2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 169 - 172
  • [44] Anomaly Detection for Controller Area Networks Using Long Short-Term Memory
    Tanksale, Vinayak
    IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 1 : 253 - 265
  • [45] Deepfake Detection using Capsule Networks and Long Short-Term Memory Networks
    Mehra, Akul
    Spreeuwers, Luuk
    Strisciuglio, Nicola
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 4: VISAPP, 2021, : 407 - 414
  • [46] Intelligent Islanding Detection of Microgrids Using Long Short-Term Memory Networks
    Bukhari, Syed Basit Ali
    Mehmood, Khawaja Khalid
    Wadood, Abdul
    Park, Herie
    ENERGIES, 2021, 14 (18)
  • [47] Detection of Abnormal Network Traffic Using Bidirectional Long Short-Term Memory
    Thi Thanh N.N.
    Nguyen Q.H.
    Computer Systems Science and Engineering, 2023, 46 (01): : 491 - 504
  • [48] Damage Detection in a Benchmark Structure Using Long Short-term Memory Networks
    Lin, Zhiwei
    Liu, Yonggui
    Zhou, Linren
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 2300 - 2305
  • [49] Sensitive and robust chemical detection using an olfactory brain-computer interface
    Shor, Erez
    Herrero-Vidal, Pedro
    Dewan, Adam
    Uguz, Ilke
    Curto, Vincenzo F.
    Malliaras, George G.
    Savin, Cristina
    Bozza, Thomas
    Rinberg, Dmitry
    BIOSENSORS & BIOELECTRONICS, 2022, 195
  • [50] Enhanced Long Short-Term Memory Model for Runoff Prediction
    Feng, Rui
    Fan, Guangwei
    Lin, Jianyi
    Yao, Baozhen
    Guo, Qinghai
    JOURNAL OF HYDROLOGIC ENGINEERING, 2021, 26 (02)