Deepfake Detection using Capsule Networks and Long Short-Term Memory Networks

被引:1
|
作者
Mehra, Akul [1 ]
Spreeuwers, Luuk [1 ]
Strisciuglio, Nicola [1 ]
机构
[1] Univ Twente, Data Management & Biometr Grp, Enschede, Netherlands
关键词
Deepfake Detection; Face Video Manipulation; Capsule Networks; Long Short-Term Memory Networks;
D O I
10.5220/0010289004070414
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the recent advancements of technology, and in particular with graphics processing and artificial intelligence algorithms, fake media generation has become easier. Using deep learning techniques like Deepfakes and FaceSwap, anyone can generate fake videos by manipulating the face/voice of target subjects in videos. These AI synthesized videos are a big threat to the authenticity and trustworthiness of online information and can be used for malicious purposes. Detecting face tampering in videos is of utmost importance. We propose a spatio-temporal hybrid model of Capsule Networks integrated with Long Short-Term Memory (LSTM) networks. This model exploits the inconsistencies in videos to distinguish real and fake videos. We use three different frame selection techniques and show that frame selection has a significant impact on the performance of models. The combined Capsule and LSTM network have comparable performance to state-of-the-art models and about 1 /5th the number of parameters, resulting in reduced computational cost.
引用
收藏
页码:407 / 414
页数:8
相关论文
共 50 条
  • [1] Anomaly Detection for Controller Area Networks Using Long Short-Term Memory
    Tanksale, Vinayak
    [J]. IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 1 : 253 - 265
  • [2] Intelligent Islanding Detection of Microgrids Using Long Short-Term Memory Networks
    Bukhari, Syed Basit Ali
    Mehmood, Khawaja Khalid
    Wadood, Abdul
    Park, Herie
    [J]. ENERGIES, 2021, 14 (18)
  • [3] Damage Detection in a Benchmark Structure Using Long Short-term Memory Networks
    Lin, Zhiwei
    Liu, Yonggui
    Zhou, Linren
    [J]. 2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 2300 - 2305
  • [4] Detection of Deepfake Video Using Residual Neural Network and Long Short-Term Memory
    Karandikar, A. M.
    Thakare, Y. N.
    Sah, O.
    Sah, R. K.
    Nafde, S.
    Kumar, S.
    [J]. INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2023, 14 (01): : 67 - 73
  • [5] Short-Term Traffic Prediction Using Long Short-Term Memory Neural Networks
    Abbas, Zainab
    Al-Shishtawy, Ahmad
    Girdzijauskas, Sarunas
    Vlassov, Vladimir
    [J]. 2018 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS), 2018, : 57 - 65
  • [6] Reliability Estimation Using Long Short-Term Memory Networks
    Davila-Frias, Alex
    Khumprom, Phattara
    Yadav, Om Prakash
    [J]. 2023 ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, RAMS, 2023,
  • [7] Classification of HRV using Long Short-Term Memory Networks
    Leite, Argentina
    Silva, Maria Eduarda
    Rocha, Ana Paula
    [J]. 2020 11TH CONFERENCE OF THE EUROPEAN STUDY GROUP ON CARDIOVASCULAR OSCILLATIONS (ESGCO): COMPUTATION AND MODELLING IN PHYSIOLOGY NEW CHALLENGES AND OPPORTUNITIES, 2020,
  • [8] On the Initialization of Long Short-Term Memory Networks
    Ghazi, Mostafa Mehdipour
    Nielsen, Mads
    Pai, Akshay
    Modat, Marc
    Cardoso, M. Jorge
    Ourselin, Sebastien
    Sorensen, Lauge
    [J]. NEURAL INFORMATION PROCESSING (ICONIP 2019), PT I, 2019, 11953 : 275 - 286
  • [9] Evolving Long Short-Term Memory Networks
    Neto, Vicente Coelho Lobo
    Passos, Leandro Aparecido
    Papa, Joao Paulo
    [J]. COMPUTATIONAL SCIENCE - ICCS 2020, PT II, 2020, 12138 : 337 - 350
  • [10] Automatic Pitch Accent Detection Using Long Short-Term Memory Neural Networks
    Wu, Yizhi
    Li, Sha
    Li, Hongyan
    [J]. 2019 INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING SYSTEMS (SPSS 2019), 2019, : 41 - 45