TaxisPy: A Python']Python-based software for the quantitative analysis of bacterial chemotaxis

被引:4
|
作者
Valderrama-Gomez, Miguel A. [1 ]
Schomer, Rebecca A. [1 ]
Savageau, Michael A. [1 ,2 ]
Parales, Rebecca E. [1 ]
机构
[1] Univ Calif Davis, Coll Biol Sci, Dept Microbiol & Mol Genet, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA
基金
美国食品与农业研究所; 美国国家科学基金会;
关键词
Cell tracking software; Quantitative chemotaxis; Video analysis software; PSEUDOMONAS-PUTIDA; TOLUENE; ALGORITHMS; COMPUTER;
D O I
10.1016/j.mimet.2020.105918
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Several species of bacteria are able to modify their swimming behavior in response to chemical attractants or repellents. Methods for the quantitative analysis of bacterial chemotaxis such as quantitative capillary assays are tedious and time-consuming. Computer-based video analysis of swimming bacteria represents a valuable method to directly assess their chemotactic response. Even though multiple studies have used this approach to elucidate various aspects of bacterial chemotaxis, to date, no computer software for such analyses is freely available. Here, we introduce TaxisPy, a Python-based software for the quantitative analysis of bacterial chemotaxis. The software comes with an intuitive graphical user interface and can be accessed easily through Docker on any operating system. Using a video of freely swimming cells as input, TaxisPy estimates the culture's average tumbling frequency over time. We demonstrate the utility of the software by assessing the effect of different concentrations of the attractant shikimate on the swimming behavior of Pseudomonas putida F1 and by capturing the adaptation process that Escherichia coli undergoes after being exposed to L-aspartate.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] An Improved Python']Python-Based Image Processing Algorithm for Flotation Foam Analysis
    Zhang, Wenkang
    Liu, Dan
    Wang, Chunjing
    Liu, Ruitao
    Wang, Daqian
    Yu, Longzhou
    Wen, Shuming
    [J]. MINERALS, 2022, 12 (09)
  • [42] SamuROI, a Python']Python-Based Software Tool for Visualization and Analysis of Dynamic Time Series Imaging at Multiple Spatial Scales
    Rueckl, Martin
    Lenzi, Stephen C.
    Moreno-Velasquez, Laura
    Parthier, Daniel
    Schmitz, Dietmar
    Ruediger, Sten
    Johenning, Friedrich W.
    [J]. FRONTIERS IN NEUROINFORMATICS, 2017, 11 : 1 - 14
  • [43] mango: A modular python']python-based agent simulation framework
    Schrage, Rico
    Sager, Jens
    Hoerding, Jan Philipp
    Holly, Stefanie
    [J]. SOFTWAREX, 2024, 27
  • [44] FitAO: a Python']Python-based platform for algorithmic development in AO
    Krokberg, Tomi
    Nousiainen, Jalo
    Lehtonen, Jonatan
    Helin, Tapio
    [J]. ADAPTIVE OPTICS SYSTEMS VIII, 2022, 12185
  • [45] PySPH: A Python']Python-based Framework for Smoothed Particle Hydrodynamics
    Ramachandran, Prabhu
    Bhosale, Aditya
    Puri, Kunal
    Negi, Pawan
    Muta, Abhinav
    Dinesh, A.
    Menon, Dileep
    Govind, Rahul
    Sanka, Suraj
    Sebastian, Amal S.
    Sen, Ananyo
    Kaushik, Rohan
    Kumar, Anshuman
    Kurapati, Vikas
    Patil, Mrinalgouda
    Tavker, Deep
    Pandey, Pankaj
    Kaushik, Chandrashekhar
    Dutt, Arkopal
    Agarwal, Arpit
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2021, 47 (04):
  • [46] PHIDL: Python']Python-based layout and geometry creation for nanolithography
    McCaughan, Adam N.
    Tait, Alexander N.
    Buckley, Sonia M.
    Oh, Dylan M.
    Chiles, Jeffrey T.
    Shainline, Jeffrey M.
    Nam, Sae Woo
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2021, 39 (06):
  • [47] PyTFL: A Python']Python-based Neural Team Formation Toolkit
    Rad, Radin Hamidi
    Mitha, Aabid
    Fani, Hossein
    Kargar, Mehdi
    Szlichta, Jaroslaw
    Bagheri, Ebrahim
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 4716 - 4720
  • [48] SBcoyote: An extensible Python']Python-based reaction editor and viewer
    Xu, Jin
    Geng, Gary
    Nguyen, Nhan D.
    Perena-Cortes, Carmen
    Samuels, Claire
    Sauro, Herbert M.
    [J]. BIOSYSTEMS, 2023, 232
  • [49] SuffixAligner: A Python']Python-based Aligner for Long Noisy Reads
    Rabea, Zeinab
    El-Metwally, Sara
    Elmougy, Samir
    Rashad, M. Z.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (04) : 168 - 172
  • [50] Influence of multiple hypothesis testing on reproducibility in neuroimaging research: A simulation study and Python']Python-based software
    Puolivali, Tuomas
    Palva, Satu
    Palva, J. Matias
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2020, 337