PyTFL: A Python']Python-based Neural Team Formation Toolkit

被引:6
|
作者
Rad, Radin Hamidi [1 ]
Mitha, Aabid [2 ]
Fani, Hossein [3 ]
Kargar, Mehdi [1 ]
Szlichta, Jaroslaw [2 ]
Bagheri, Ebrahim [1 ]
机构
[1] Ryerson Univ, Toronto, ON, Canada
[2] Ontario Tech Univ, Oshawa, ON, Canada
[3] Univ Windsor, Windsor, ON, Canada
关键词
Team Formation; Expert Networks; Task Assignment;
D O I
10.1145/3459637.3481992
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present PyTFL, a library written in Python for the team formation task. In team formation task, the main objective is to form a team of experts given a set of skills. We demonstrate an efficient and well-structured open-source toolkit that can easily be imported into Python. Our toolkit incorporates state-of-the-art approaches for team formation, e.g., neural-based team formation, and supports team formation sub-tasks such as collaboration graph preparation, model training and validation, systematic evaluation based on qualitative and quantitative team metrics, and efficient team formation and prediction. While there are strong research papers on the team formation problem, PyTFL is the first toolkit to be publicly released for this purpose.
引用
收藏
页码:4716 / 4720
页数:5
相关论文
共 50 条
  • [1] XCompress: LLM assisted Python']Python-based text compression toolkit
    Ozturk, Emir
    [J]. SOFTWAREX, 2024, 27
  • [2] Bayesian Neural Networks via MCMC: A Python']Python-Based Tutorial
    Chandra, Rohitash
    Simmons, Joshua
    [J]. IEEE ACCESS, 2024, 12 : 70519 - 70549
  • [3] Immunopeptidomics toolkit library (IPTK): a python']python-based modular toolbox for analyzing immunopeptidomics data
    ElAbd, Hesham
    Degenhardt, Frauke
    Koudelka, Tomas
    Kamps, Ann-Kristin
    Tholey, Andreas
    Bacher, Petra
    Lenz, Tobias L.
    Franke, Andre
    Wendorff, Mareike
    [J]. BMC BIOINFORMATICS, 2021, 22 (01)
  • [4] PyCBC Inference: A Python']Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals
    Biwer, C. M.
    Capano, Collin D.
    De, Soumi
    Cabero, Miriam
    Brown, Duncan A.
    Nitz, Alexander H.
    Raymond, V
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2019, 131 (996)
  • [5] QuaPy: A Python']Python-Based Framework for Quantification
    Moreo, Alejandro
    Esuli, Andrea
    Sebastiani, Fabrizio
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 4534 - 4543
  • [6] Python']Python-based In Situ Analysis and Visualization
    Loring, Burlen
    Myers, Andrew
    Camp, David
    Bethel, E. Wes
    [J]. PROCEEDINGS OF IN SITU INFRASTRUCTURES FOR ENABLING EXTREME-SCALE ANALYSIS AND VISUALIZATION (ISAV 2018), 2018, : 19 - 24
  • [7] PACO: Python']Python-Based Atmospheric Correction
    de los Reyes, Raquel
    Langheinrich, Maximilian
    Schwind, Peter
    Richter, Rudolf
    Pflug, Bringfried
    Bachmann, Martin
    Mueller, Rupert
    Carmona, Emiliano
    Zekoll, Viktoria
    Reinartz, Peter
    [J]. SENSORS, 2020, 20 (05)
  • [8] fuzzycreator: A Python']Python-Based Toolkit for Automatically Generating and Analysing Data-Driven Fuzzy Sets
    McCulloch, Josie
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2017,
  • [9] pySSpredict: A python']python-based solid-solution strength prediction toolkit for complex concentrated alloys
    Wen, Dongsheng
    Titus, Michael S.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2023, 220
  • [10] SDMtoolbox: a python']python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses
    Brown, Jason L.
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2014, 5 (07): : 694 - 700