Irregular labelings of circulant graphs

被引:36
|
作者
Anholcer, Marcin [1 ]
Palmer, Cory [2 ]
机构
[1] Poznan Univ Econ, Fac Informat & Elect Econ, Dept Operat Res, PL-61875 Poznan, Poland
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
Irregularity strength; Total vertex irregularity strength; Graph weighting; Graph labeling; Circulant graph; STRENGTH; TREES;
D O I
10.1016/j.disc.2012.06.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the irregularity strength (s(G)) and total vertex irregularity strength (tvs(G)) of circulant graphs Ci(n)(1, 2, ... , k) and prove that tvs(Ci(n) (1, 2, ... , k)) = inverted right perpendicularn+2k/2k+1inverted left perpendicular, while s(Ci(n)(1, 2, ... , k)) = inverted right perpendicularn+2k-1/2kinverted left perpendicular except if either n = 2k + 1 or if k is odd and n 2k + 1(mod 4k), then s(Ci(n) (1, 2, ... , k)) = inverted right perpendicularn-2k-1/2kinverted left perpendicular + 1. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:3461 / 3466
页数:6
相关论文
共 50 条
  • [1] Irregular labelings of helm and sun graphs
    Ahmad, Ali
    Arshad, Misbah
    Izarikova, Gabriela
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2015, 12 (2-3) : 161 - 168
  • [2] GROUP IRREGULAR LABELINGS OF DISCONNECTED GRAPHS
    Anholcer, Marcin
    Cichacz, Sylwia
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2017, 12 (02) : 158 - 166
  • [3] Note on edge irregular reflexive labelings of graphs
    Baca, Martin
    Irfan, Muhammad
    Ryan, Joe
    Semanicova-Fenovcikova, Andrea
    Tanna, Dushyant
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2019, 16 (02) : 145 - 157
  • [4] On Odd-graceful Labelings of Irregular Dragon Graphs
    Liu, Xinsheng
    Liu, Yuanyuan
    Yao, Bing
    Ma, Yumei
    Lian, Hua
    PROCEEDINGS OF 2014 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2014, : 415 - 418
  • [5] On vertex irregular total labelings of convex polytope graphs
    Ahmad, Ali
    UTILITAS MATHEMATICA, 2012, 89 : 69 - 78
  • [6] On L (p, p-1, . . ., 1) Labelings of Circulant Graphs
    Mageshwaran, K.
    Ahmad, Ali
    Unyong, Bundit
    Kalaimurugan, G.
    Gopinath, S.
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [7] Multi-level and antipodal labelings for certain classes of circulant graphs
    Kang, Shin Min
    Nazeer, Saima
    Kousar, Imrana
    Nazeer, Waqas
    Kwun, Young Chel
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 2832 - 2845
  • [8] On total irregular labelings with no-hole weights of some planar graphs
    Mitra, Sarbari
    Bhoumik, Soumya
    DISCRETE MATHEMATICS AND APPLICATIONS, 2024, 34 (03): : 167 - 174
  • [9] Irregular Total Labelings of Convex Polytope Graphs Having the Same Diameter
    Al-Mushayt, O.
    Ahmad, Ali
    Siddiqui, M. K.
    UTILITAS MATHEMATICA, 2016, 101 : 295 - 307
  • [10] Some Irregular Total Labelings of Expansion Graphs expan(Pm, Cn)
    Pratama, D.
    Salman, A. N. M.
    PROCEEDINGS OF THE 8TH SEAMS-UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2019: DEEPENING MATHEMATICAL CONCEPTS FOR WIDER APPLICATION THROUGH MULTIDISCIPLINARY RESEARCH AND INDUSTRIES COLLABORATIONS, 2019, 2192