Some Irregular Total Labelings of Expansion Graphs expan(Pm, Cn)

被引:0
|
作者
Pratama, D. [1 ]
Salman, A. N. M. [1 ]
机构
[1] Inst Teknol Bandung, Combinatorial Math Res Grp, Fac Math & Nat Sci, Jl Ganesha 10, Bandung 40132, Indonesia
关键词
edge-irregular total k-labeling; expansion graph; total edge irregularity strength; total vertex irregularity strength; vertex-irregular total k-labeling;
D O I
10.1063/1.5139136
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a simple graph G = (V(G), E(G)) with vertex set V(G) and edge set E(G), a total labeling lambda : V(G) boolean OR E(G) -> {1, 2, ..., k} is called an edge-irregular total k-labeling of G if for any two different edges e = e(1)e(2) and f = f(1)f(2) in E(G), we have wt(e) not equal wt( f), where wt(e) = lambda(e(1)) + lambda(e) + lambda(e(2)). Meanwhile, a total labeling theta : V(G) boolean OR E(G) -> {1, 2,..., k} is called a vertex-irregular total k-labeling of G if for any two different vertices u and v in V(G), we obtain wt(u) not equal wt(v), where wt(u) = theta(u) + Sigma(uv is an element of E(G)) theta(uv). The minimum value of k for which there exists an edge (a vertex)-irregular total k-labeling of G is called the total edge (vertex) irregular strength of G, denoted by tes(G) (tvs(G)). In this paper, we consider an expansion graph expan (P-m, C-n), where P-m is a path on m vertices and C-n is a cycle on n vertices. An expan (P-m, C-n) is a graph obtained from a copy of P-m and m + n copies of C-n by sticking the i-th copy of C-n at i-th vertex of P-m and sticking the j-th copy of C-n at the j-th edge of P-m. We determine tes(expan(P-m, C-n)) and tvs(expan(P-m, C-n)) for any integers m >= 2 and n >= 3.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] On total irregular labelings with no-hole weights of some planar graphs
    Mitra, Sarbari
    Bhoumik, Soumya
    DISCRETE MATHEMATICS AND APPLICATIONS, 2024, 34 (03): : 167 - 174
  • [2] On vertex irregular total labelings of convex polytope graphs
    Ahmad, Ali
    UTILITAS MATHEMATICA, 2012, 89 : 69 - 78
  • [3] Irregular labelings of circulant graphs
    Anholcer, Marcin
    Palmer, Cory
    DISCRETE MATHEMATICS, 2012, 312 (23) : 3461 - 3466
  • [4] Irregular Total Labelings of Convex Polytope Graphs Having the Same Diameter
    Al-Mushayt, O.
    Ahmad, Ali
    Siddiqui, M. K.
    UTILITAS MATHEMATICA, 2016, 101 : 295 - 307
  • [5] On vertex irregular total labelings
    Ahmad, Ali
    Baca, Martin
    ARS COMBINATORIA, 2013, 112 : 129 - 139
  • [6] Irregular labelings of helm and sun graphs
    Ahmad, Ali
    Arshad, Misbah
    Izarikova, Gabriela
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2015, 12 (2-3) : 161 - 168
  • [7] GROUP IRREGULAR LABELINGS OF DISCONNECTED GRAPHS
    Anholcer, Marcin
    Cichacz, Sylwia
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2017, 12 (02) : 158 - 166
  • [8] On (a,d)-total edge irregular labelings
    Mitra, Sarbari
    Bhoumik, Soumya
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (02)
  • [9] Note on edge irregular reflexive labelings of graphs
    Baca, Martin
    Irfan, Muhammad
    Ryan, Joe
    Semanicova-Fenovcikova, Andrea
    Tanna, Dushyant
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2019, 16 (02) : 145 - 157
  • [10] IRREGULAR TOTAL LABELLINGS OF SOME FAMILIES OF GRAPHS
    Tong Chunling
    Lin Xiaohui
    Yang Yuansheng
    Wang Liping
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2009, 40 (03): : 155 - 181