Some Irregular Total Labelings of Expansion Graphs expan(Pm, Cn)

被引:0
|
作者
Pratama, D. [1 ]
Salman, A. N. M. [1 ]
机构
[1] Inst Teknol Bandung, Combinatorial Math Res Grp, Fac Math & Nat Sci, Jl Ganesha 10, Bandung 40132, Indonesia
关键词
edge-irregular total k-labeling; expansion graph; total edge irregularity strength; total vertex irregularity strength; vertex-irregular total k-labeling;
D O I
10.1063/1.5139136
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a simple graph G = (V(G), E(G)) with vertex set V(G) and edge set E(G), a total labeling lambda : V(G) boolean OR E(G) -> {1, 2, ..., k} is called an edge-irregular total k-labeling of G if for any two different edges e = e(1)e(2) and f = f(1)f(2) in E(G), we have wt(e) not equal wt( f), where wt(e) = lambda(e(1)) + lambda(e) + lambda(e(2)). Meanwhile, a total labeling theta : V(G) boolean OR E(G) -> {1, 2,..., k} is called a vertex-irregular total k-labeling of G if for any two different vertices u and v in V(G), we obtain wt(u) not equal wt(v), where wt(u) = theta(u) + Sigma(uv is an element of E(G)) theta(uv). The minimum value of k for which there exists an edge (a vertex)-irregular total k-labeling of G is called the total edge (vertex) irregular strength of G, denoted by tes(G) (tvs(G)). In this paper, we consider an expansion graph expan (P-m, C-n), where P-m is a path on m vertices and C-n is a cycle on n vertices. An expan (P-m, C-n) is a graph obtained from a copy of P-m and m + n copies of C-n by sticking the i-th copy of C-n at i-th vertex of P-m and sticking the j-th copy of C-n at the j-th edge of P-m. We determine tes(expan(P-m, C-n)) and tvs(expan(P-m, C-n)) for any integers m >= 2 and n >= 3.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Vertex-magic total labelings of even complete graphs
    Armstrong, Addie
    McQuillan, Dan
    DISCRETE MATHEMATICS, 2011, 311 (8-9) : 676 - 683
  • [42] Super-edge-graceful labelings of some cubic graphs
    Shiu, Wai Chee
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (06) : 1621 - 1628
  • [43] Super-edge-graceful Labelings of Some Cubic Graphs
    Wai Chee SHIU
    Acta Mathematica Sinica,English Series, 2006, 22 (06) : 1621 - 1628
  • [44] K-EQUITABLE LABELINGS OF CYCLES AND SOME OTHER GRAPHS
    SZANISZLO, Z
    ARS COMBINATORIA, 1994, 37 : 49 - 63
  • [45] Formulas and algorithms of antimagic labelings of some helm related graphs
    Krishnaa, A.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2016, 19 (02): : 425 - 434
  • [46] On the super (α, d)-H-antimagic total labelings of three graphs
    Zhu, Dongxu
    Liang, Zhihe
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2023, 44 (02): : 195 - 205
  • [47] On super (a, 1)-edge-antimagic total labelings of regular graphs
    Baca, Martin
    Kovar, Petr
    Semanicova-Fenovcikova, Andrea
    Shafiq, Muhammad Kashif
    DISCRETE MATHEMATICS, 2010, 310 (09) : 1408 - 1412
  • [48] On the total signed domination number of Pm▭Cn
    Gao, Hong
    Cao, Huiping
    Yang, Yuansheng
    ARS COMBINATORIA, 2018, 136 : 3 - 19
  • [49] Chromatic number of super vertex local antimagic total labelings of graphs
    Hadiputra, Fawwaz F.
    Sugeng, Kiki A.
    Silaban, Denny R.
    Maryati, Tita K.
    Froncek, Dalibor
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2021, 9 (02) : 485 - 498
  • [50] Irregular total labeling of wheel related graphs
    Bokhary, Syed Ahtsham ul Haq
    Ali, Usman
    Maqbool, Sahar
    UTILITAS MATHEMATICA, 2018, 107 : 231 - 242