Irregular labelings of circulant graphs

被引:36
|
作者
Anholcer, Marcin [1 ]
Palmer, Cory [2 ]
机构
[1] Poznan Univ Econ, Fac Informat & Elect Econ, Dept Operat Res, PL-61875 Poznan, Poland
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
Irregularity strength; Total vertex irregularity strength; Graph weighting; Graph labeling; Circulant graph; STRENGTH; TREES;
D O I
10.1016/j.disc.2012.06.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the irregularity strength (s(G)) and total vertex irregularity strength (tvs(G)) of circulant graphs Ci(n)(1, 2, ... , k) and prove that tvs(Ci(n) (1, 2, ... , k)) = inverted right perpendicularn+2k/2k+1inverted left perpendicular, while s(Ci(n)(1, 2, ... , k)) = inverted right perpendicularn+2k-1/2kinverted left perpendicular except if either n = 2k + 1 or if k is odd and n 2k + 1(mod 4k), then s(Ci(n) (1, 2, ... , k)) = inverted right perpendicularn-2k-1/2kinverted left perpendicular + 1. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:3461 / 3466
页数:6
相关论文
共 50 条
  • [31] MAGIC LABELINGS OF REGULAR GRAPHS
    Kovar, Petr
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2007, 4 (03) : 261 - 275
  • [32] Groups of balanced labelings on graphs
    Cherniavsky, Yonah
    Goldstein, Avraham
    Levit, Vadim E.
    DISCRETE MATHEMATICS, 2014, 320 : 15 - 25
  • [33] Neighborhood homogeneous labelings of graphs
    Naval Surface Warfare Center, 18444 Frontage Rd., Dahlgren
    VA
    22448, United States
    不详
    NY, United States
    不详
    MD, United States
    J. Comb. Math. Comb. Comp., (201-220):
  • [34] ODD GRACEFUL LABELINGS OF GRAPHS
    Gao, Zhen-Bin
    Zhang, Xiao-Dong
    Xu, Li-Juan
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2009, 1 (03) : 377 - 388
  • [35] ON MAGIC LABELINGS OF GRID GRAPHS
    BACA, M
    ARS COMBINATORIA, 1992, 33 : 295 - 299
  • [36] Totally magic labelings of graphs
    Calhoun, Bill
    Lister, Lisa
    Ferland, Kevin
    Polhill, John
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2005, 32 : 47 - 59
  • [37] Optimal radio labelings of graphs
    Bantva, Devsi
    DISCRETE MATHEMATICS LETTERS, 2022, 10 : 91 - 98
  • [38] Rigid tensegrity labelings of graphs
    Jordan, Tibor
    Recski, Andras
    Szabadka, Zoltan
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (08) : 1887 - 1895
  • [39] Antimagic Labelings of Join Graphs
    Bača M.
    Phanalasy O.
    Ryan J.
    Semaničová-Feňovčíková A.
    Mathematics in Computer Science, 2015, 9 (2) : 139 - 143
  • [40] Graceful labelings of directed graphs
    Marr, Alison M.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2008, 66 : 97 - 103