On separable Fokker-Planck equations with a constant diagonal diffusion matrix

被引:1
|
作者
Zhalij, A [1 ]
机构
[1] Ukrainian Acad Sci, Inst Math, UA-252004 Kyiv, Ukraine
来源
关键词
D O I
10.1088/0305-4470/32/42/311
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We classify (1+3)-dimensional Fokker-Planck equations with a constant diagonal diffusion matrix that are solvable by the method of separation of variables. As a result, we get possible forms of the drift coefficients B-1((x) over right arrow), B-2((x) over right arrow), B-3((x) over right arrow) providing separability of the corresponding Fokker-Planck equations and carry out variable separation in the latter. It is established, in particular, that the necessary condition for the Fokker-Planck equation to be separable is that the drift coefficients (B) over right arrow((x) over right arrow) must be linear. We also find the necessary condition for R-separability of the Fokker-Planck equation. Furthermore, exact solutions of the Fokker-Planck equation with separated variables are constructed.
引用
收藏
页码:7393 / 7404
页数:12
相关论文
共 50 条
  • [1] Darboux transformations for (1+2)-dimensional Fokker-Planck equations with constant diffusion matrix
    Schulze-Halberg, Axel
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (10)
  • [2] POLYNOMIAL EXPANSION OF THE POTENTIAL OF FOKKER-PLANCK EQUATIONS WITH A NONINVERTIBLE DIFFUSION MATRIX
    GANG, H
    HAKEN, H
    [J]. PHYSICAL REVIEW A, 1989, 40 (10) : 5966 - 5978
  • [3] QCD FOKKER-PLANCK EQUATIONS WITH COLOR DIFFUSION
    SELIKHOV, AV
    GYULASSY, M
    [J]. PHYSICAL REVIEW C, 1994, 49 (03): : 1726 - 1729
  • [4] ON THE ASYMPTOTIC EQUIVALENCE OF THE FOKKER-PLANCK AND DIFFUSION-EQUATIONS
    BEALS, R
    PROTOPOPESCU, V
    [J]. TRANSPORT THEORY AND STATISTICAL PHYSICS, 1983, 12 (02): : 109 - 127
  • [5] FLUX-LIMITED DIFFUSION AND FOKKER-PLANCK EQUATIONS
    POMRANING, GC
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 1983, 85 (02) : 116 - 126
  • [6] Symmetries of the Fokker-Planck equation with a constant diffusion matrix in 2+1 dimensions
    Finkel, F
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (14): : 2671 - 2684
  • [7] Invariants of Fokker-Planck equations
    Sumiyoshi Abe
    [J]. The European Physical Journal Special Topics, 2017, 226 : 529 - 532
  • [8] Invariants of Fokker-Planck equations
    Abe, Sumiyoshi
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (03): : 529 - 532
  • [9] Deformed fokker-planck equations
    Ho, Choon-Lin
    Sasaki, Ryu
    [J]. PROGRESS OF THEORETICAL PHYSICS, 2007, 118 (04): : 667 - 674
  • [10] GEOMETRIC FOKKER-PLANCK EQUATIONS
    Lebeau, Gilles
    [J]. PORTUGALIAE MATHEMATICA, 2005, 62 (04) : 469 - 530