Topological phase transition in the Scheidegger model of river networks

被引:0
|
作者
Oppenheim, Jacob N. [1 ]
Magnasco, Marcelo O. [1 ]
机构
[1] Rockefeller Univ, Phys Math Lab, New York, NY 10065 USA
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 02期
基金
美国国家科学基金会;
关键词
SCALING LAWS; PRINCIPLE; STABILITY; MASS;
D O I
10.1103/PhysRevE.86.021134
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Transport networks are found at the heart of myriad natural systems, yet are poorly understood, except for the case of river networks. The Scheidegger model, in which rivers are convergent random walks, has been studied only in the case of flat topography, ignoring the variety of curved geometries found in nature. Embedding this model on a cone, we find a convergent and a divergent phase, corresponding to few, long basins and many, short basins, respectively, separated by a singularity, indicating a phase transition. Quantifying basin shape using Hacks law l similar to a(h) gives distinct values for h, providing a method of testing our hypotheses. The generality of our model suggests implications for vascular morphology, in particular, differing number and shapes of arterial and venous trees.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Holographic phase transition to topological dyons
    Davood Allahbakhshi
    Farhad Ardalan
    [J]. Journal of High Energy Physics, 2010
  • [42] Holographic phase transition to topological dyons
    Allahbakhshi, Davood
    Ardalan, Farhad
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (10):
  • [43] Quench dynamics of the topological quantum phase transition in the Wen-plaquette model
    Zhang, Long
    Kou, Su-Peng
    Deng, Youjin
    [J]. PHYSICAL REVIEW A, 2011, 83 (06):
  • [44] Topological quantum phase transition in Kane-Mele-Kondo lattice model
    Zhong, Yin
    Wang, Yu-Feng
    Lu, Han-Tao
    Luo, Hong-Gang
    [J]. PHYSICAL REVIEW B, 2013, 88 (23)
  • [45] Quantum speed limit and topological quantum phase transition in an extended XY model
    Cheng, W. W.
    Li, B.
    Gong, L. Y.
    Zhao, S. M.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 597
  • [46] First-order topological phase transition of the Haldane-Hubbard model
    Imriska, Jakub
    Wang, Lei
    Troyer, Matthias
    [J]. PHYSICAL REVIEW B, 2016, 94 (03)
  • [47] Reentrant topological phase transition in a bridging model between Kitaev and Haldane chains
    Sugimoto, Takanori
    Ohtsu, Mitsuyoshi
    Tohyama, Takami
    [J]. PHYSICAL REVIEW B, 2017, 96 (24)
  • [48] Topological Phase Transition and Texture Inversion in a Tunable Topological Insulator
    Xu, Su-Yang
    Xia, Y.
    Wray, L. A.
    Jia, S.
    Meier, F.
    Dil, J. H.
    Osterwalder, J.
    Slomski, B.
    Bansil, A.
    Lin, H.
    Cava, R. J.
    Hasan, M. Z.
    [J]. SCIENCE, 2011, 332 (6029) : 560 - 564
  • [49] Topological phase transition of two-dimensional topological polaritons
    Chi, Zimeng
    Guo, Xiaoyong
    Wang, Zaijun
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2017, 31 (11):
  • [50] Topological transition in a coupled dynamics in random networks
    Gomes, P. F.
    Fernandes, H. A.
    Costa, A. A.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 597