Topological phase transition in the Scheidegger model of river networks

被引:0
|
作者
Oppenheim, Jacob N. [1 ]
Magnasco, Marcelo O. [1 ]
机构
[1] Rockefeller Univ, Phys Math Lab, New York, NY 10065 USA
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 02期
基金
美国国家科学基金会;
关键词
SCALING LAWS; PRINCIPLE; STABILITY; MASS;
D O I
10.1103/PhysRevE.86.021134
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Transport networks are found at the heart of myriad natural systems, yet are poorly understood, except for the case of river networks. The Scheidegger model, in which rivers are convergent random walks, has been studied only in the case of flat topography, ignoring the variety of curved geometries found in nature. Embedding this model on a cone, we find a convergent and a divergent phase, corresponding to few, long basins and many, short basins, respectively, separated by a singularity, indicating a phase transition. Quantifying basin shape using Hacks law l similar to a(h) gives distinct values for h, providing a method of testing our hypotheses. The generality of our model suggests implications for vascular morphology, in particular, differing number and shapes of arterial and venous trees.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Topological transition in dynamic complex networks
    Kami, Nobuharu
    Ikeda, Hideo
    [J]. PHYSICAL REVIEW E, 2009, 79 (05)
  • [32] Topological phase transition at the interface of a topological with a conventional insulator
    Aryal, Niraj
    Manousakis, Efstratios
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (23)
  • [33] A general phase transition model for traffic flow on networks
    Blandin, Sebastien
    Goatin, Paola
    Piccoli, Benedetto
    Bayen, Alexandre
    Work, Daniel
    [J]. PROCEEDINGS OF EWGT 2012 - 15TH MEETING OF THE EURO WORKING GROUP ON TRANSPORTATION, 2012, 54 : 302 - 311
  • [34] Floquet dynamical quantum phase transition in the extended XY model: Nonadiabatic to adiabatic topological transition
    Zamani, Sara
    Jafari, R.
    Langari, A.
    [J]. PHYSICAL REVIEW B, 2020, 102 (14)
  • [35] Photonic topological phase transition on demand
    Kudyshev, Zhaxylyk A.
    Kildishev, Alexander, V
    Boltasseva, Alexandra
    Shalaev, Vladimir M.
    [J]. NANOPHOTONICS, 2019, 8 (08) : 1349 - 1356
  • [36] Topological phase transition in a discrete quasicrystal
    Sagi, Eran
    Eisenberg, Eli
    [J]. PHYSICAL REVIEW E, 2014, 90 (01):
  • [37] Manipulating topological phase transition by strain
    Liu, Junwei
    Xu, Yong
    Wu, Jian
    Gu, Bing-Lin
    Zhang, S. B.
    Duan, Wenhui
    [J]. ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS, 2014, 70 : 118 - 122
  • [38] Symmetry breaking at a topological phase transition
    Faulkner, Michael F.
    [J]. PHYSICAL REVIEW B, 2024, 109 (08)
  • [39] Topological phase transition in network spreading
    Nian, Fuzhong
    Zhang, Xia
    [J]. CHINESE PHYSICS B, 2023, 32 (03)
  • [40] Topological phase transition in network spreading
    年福忠
    张霞
    [J]. Chinese Physics B, 2023, 32 (03) : 729 - 741