Global normally hyperbolic invariant cylinders in Lagrangian systems

被引:10
|
作者
Cheng, Chong-Qing [1 ]
Zhou, Min [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Sch Informat Management, Nanjing 210093, Jiangsu, Peoples R China
关键词
D O I
10.4310/MRL.2016.v23.n3.a6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study Tonelli Lagrangian L is an element of C-r (TT2, R) with r >= 5. For a generic perturbation of Lagrangian L -> L + P where P is an element of C-r(T-2, R), we get simultaneous hyperbolicity of a family of minimal periodic orbits which share the same first homology class. Consequently, these periodic orbits make up one or more pieces of normally hyperbolic invariant cylinder in TT2.
引用
收藏
页码:685 / 705
页数:21
相关论文
共 50 条
  • [1] Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders
    Bernard, Patrick
    Kaloshin, Vadim
    Zhang, Ke
    [J]. ACTA MATHEMATICA, 2016, 217 (01) : 1 - 79
  • [2] Large Normally Hyperbolic Cylinders in a priori Stable Hamiltonian Systems
    Patrick Bernard
    [J]. Annales Henri Poincaré, 2010, 11 : 929 - 942
  • [3] Large Normally Hyperbolic Cylinders in a priori Stable Hamiltonian Systems
    Bernard, Patrick
    [J]. ANNALES HENRI POINCARE, 2010, 11 (05): : 929 - 942
  • [4] A λ-lemma for normally hyperbolic invariant manifolds
    Cresson, Jacky
    Wiggins, Stephen
    [J]. REGULAR & CHAOTIC DYNAMICS, 2015, 20 (01): : 94 - 108
  • [5] On the computation of normally hyperbolic invariant manifolds
    Broer, HW
    Osinga, HM
    Vegter, G
    [J]. NONLINEAR DYNAMICAL SYSTEMS AND CHAOS, 1996, 19 : 423 - 447
  • [6] A λ-lemma for normally hyperbolic invariant manifolds
    Jacky Cresson
    Stephen Wiggins
    [J]. Regular and Chaotic Dynamics, 2015, 20 : 94 - 108
  • [7] Invariant foliations near normally hyperbolic invariant manifolds for semiflows
    Bates, PW
    Lu, KI
    Zeng, CC
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (10) : 4641 - 4676
  • [8] Approximate normally hyperbolic invariant manifolds for semiflows
    Bates, PW
    Lu, KN
    Zeng, CC
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS AND COMPUTATIONAL SIMULATIONS, 2000, : 27 - 31
  • [9] Algorithms for computing normally hyperbolic invariant manifolds
    H.W. Broer;
    H.M. Osinga;
    G. Vegter;
    [J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1997, 48 : 480 - 524
  • [10] NUMERICAL APPROXIMATION OF NORMALLY HYPERBOLIC INVARIANT MANIFOLDS
    Broer, Henk
    Hagen, Aaron
    Vegter, Gert
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, : 133 - 140