Large Normally Hyperbolic Cylinders in a priori Stable Hamiltonian Systems

被引:7
|
作者
Bernard, Patrick [1 ]
机构
[1] CNRS, CEREMADE, UMR 7534, F-75775 Paris 16, France
来源
ANNALES HENRI POINCARE | 2010年 / 11卷 / 05期
关键词
CONNECTING ORBITS; DIFFUSION; MANIFOLDS; FLOWS;
D O I
10.1007/s00023-010-0040-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the existence of normally hyperbolic cylinders in a priori stable Hamiltonian systems the size of which is bounded from below independently of the size of the perturbation. This result should have applications to the study of Arnold's diffusion.
引用
收藏
页码:929 / 942
页数:14
相关论文
共 50 条
  • [1] Large Normally Hyperbolic Cylinders in a priori Stable Hamiltonian Systems
    Patrick Bernard
    [J]. Annales Henri Poincaré, 2010, 11 : 929 - 942
  • [2] NORMALLY STABLE HAMILTONIAN SYSTEMS
    Meyer, Kenneth R.
    Palacian, Jesus F.
    Yanguas, Patricia
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (03) : 1201 - 1214
  • [3] Global normally hyperbolic invariant cylinders in Lagrangian systems
    Cheng, Chong-Qing
    Zhou, Min
    [J]. MATHEMATICAL RESEARCH LETTERS, 2016, 23 (03) : 685 - 705
  • [4] GEOMETRY AND DYNAMICS OF STABLE AND UNSTABLE CYLINDERS IN HAMILTONIAN-SYSTEMS
    DEALMEIDA, AMO
    DELEON, N
    MEHTA, MA
    MARSTON, CC
    [J]. PHYSICA D, 1990, 46 (02): : 265 - 285
  • [5] A GENERAL MECHANISM OF INSTABILITY IN HAMILTONIAN SYSTEMS: SKIPPING ALONG A NORMALLY HYPERBOLIC INVARIANT MANIFOLD
    Gidea, Marian
    de la Llave, Rafael
    Seara, Tere M.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (12) : 6795 - 6813
  • [6] Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders
    Bernard, Patrick
    Kaloshin, Vadim
    Zhang, Ke
    [J]. ACTA MATHEMATICA, 2016, 217 (01) : 1 - 79
  • [7] Resonances in hyperbolic and Hamiltonian systems
    Baladi, V
    [J]. HARMONIC ANALYSIS AND RATIONAL APPROXIMATION: THEIR ROLES IN SIGNALS, CONTROL AND DYNAMICAL SYSTEMS, 2006, 327 : 263 - 274
  • [8] Bifurcations of normally parabolic tori in Hamiltonian systems
    Broer, HW
    Hanssmann, H
    You, JG
    [J]. NONLINEARITY, 2005, 18 (04) : 1735 - 1769
  • [9] Conservation of Hyperbolic Tori in Hamiltonian Systems
    Medvedev, A. G.
    [J]. MATHEMATICAL NOTES, 2014, 95 (1-2) : 206 - 211
  • [10] Hamiltonian systems of negative curvature are hyperbolic
    Agrachev, AA
    Shcherbakova, NN
    [J]. DOKLADY MATHEMATICS, 2005, 71 (01) : 49 - 52